| |||||||
ShanghaiTech University Knowledge Management System
SVIP: Sequence VerIfication for Procedures in Videos | |
2022 | |
会议录名称 | PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION |
ISSN | 1063-6919 |
卷号 | 2022-June |
页码 | 19858-19870 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.01927 |
摘要 | In this paper, we propose a novel sequence verification task that aims to distinguish positive video pairs performing the same action sequence from negative ones with step-level transformations but still conducting the same task. Such a challenging task resides in an open-set setting without prior action detection or segmentation that requires event-level or even frame-level annotations. To that end, we carefully reorganize two publicly available action-related datasets with step-procedure-task structure. To fully investigate the effectiveness of any method, we collect a scripted video dataset enumerating all kinds of step-level transformations in chemical experiments. Besides, a novel evaluation metric Weighted Distance Ratio is introduced to ensure equivalence for different step-level transformations during evaluation. In the end, a simple but effective baseline based on the transformer encoder with a novel sequence alignment loss is introduced to better characterize long-term dependency between steps, which outperforms other action recognition methods. Codes and data will be released1: © 2022 IEEE. |
会议名称 | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | New Orleans, LA, United states |
会议日期 | June 19, 2022 - June 24, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2018AAA0100704] ; NSFC["61932020","62172279"] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870783005068 |
出版者 | IEEE Computer Society |
EI入藏号 | 20224613119907 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251432 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_博士生 |
通讯作者 | Gao, Shenghua |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Meituan, Beijing, Peoples R China 3.Xiaohongshu Inc, Shanghai, Peoples R China 4.Tencent AI Lab, Shenzhen, Peoples R China 5.Natl Univ Singapore, Singapore, Singapore 6.Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China 7.Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Qian, Yicheng,Luo, Weixin,Lian, Dongze,et al. SVIP: Sequence VerIfication for Procedures in Videos[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:19858-19870. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。