消息
×
loading..
SVIP: Sequence VerIfication for Procedures in Videos
2022
会议录名称PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION
ISSN1063-6919
卷号2022-June
页码19858-19870
发表状态已发表
DOI10.1109/CVPR52688.2022.01927
摘要In this paper, we propose a novel sequence verification task that aims to distinguish positive video pairs performing the same action sequence from negative ones with step-level transformations but still conducting the same task. Such a challenging task resides in an open-set setting without prior action detection or segmentation that requires event-level or even frame-level annotations. To that end, we carefully reorganize two publicly available action-related datasets with step-procedure-task structure. To fully investigate the effectiveness of any method, we collect a scripted video dataset enumerating all kinds of step-level transformations in chemical experiments. Besides, a novel evaluation metric Weighted Distance Ratio is introduced to ensure equivalence for different step-level transformations during evaluation. In the end, a simple but effective baseline based on the transformer encoder with a novel sequence alignment loss is introduced to better characterize long-term dependency between steps, which outperforms other action recognition methods. Codes and data will be released1: © 2022 IEEE.
会议名称2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点New Orleans, LA, United states
会议日期June 19, 2022 - June 24, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Key R&D Program of China[2018AAA0100704] ; NSFC["61932020","62172279"] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000]
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000870783005068
出版者IEEE Computer Society
EI入藏号20224613119907
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251432
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_博士生
通讯作者Gao, Shenghua
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Meituan, Beijing, Peoples R China
3.Xiaohongshu Inc, Shanghai, Peoples R China
4.Tencent AI Lab, Shenzhen, Peoples R China
5.Natl Univ Singapore, Singapore, Singapore
6.Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
7.Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Qian, Yicheng,Luo, Weixin,Lian, Dongze,et al. SVIP: Sequence VerIfication for Procedures in Videos[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:19858-19870.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qian, Yicheng]的文章
[Luo, Weixin]的文章
[Lian, Dongze]的文章
百度学术
百度学术中相似的文章
[Qian, Yicheng]的文章
[Luo, Weixin]的文章
[Lian, Dongze]的文章
必应学术
必应学术中相似的文章
[Qian, Yicheng]的文章
[Luo, Weixin]的文章
[Lian, Dongze]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52688.2022.01927.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。