消息
×
loading..
Decentralized Federated Learning under Communication Delays
2022
会议录名称2022 IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON WORKSHOPS 2022
ISSN2473-0440
页码37-42
发表状态已发表
DOI10.1109/SECONWorkshops56311.2022.9926391
摘要

Federated learning (FL) provides a privacy-preserving approach to training algorithms across multiple edge agents or servers without sharing raw data. Based on dynamic network topologies, we study a fully decentralized FL framework utilizing gradient descent with momentum (MGD) to accelerate the convergence rate. Due to bounded time-varying transmission delays, model updates are asynchronous between different agents, which leads to time-varying information update delay. Extensive experiments are carried out to demonstrate the performance of DMFL over some related algorithms and further analyze the influence of information update delay, network size, and the data distribution on the convergence performance of DMFL. © 2022 IEEE.

关键词Machine learning Privacy-preserving techniques Communication delays Decentralised Delay Distributed machine learning Distributed optimization Federated learning Gradient-descent Information updates Momentum gradient descent Privacy preserving
会议名称2022 IEEE International Conference on Sensing, Communication, and Networking, SECON Workshops 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Virtual, Online, Sweden
会议日期September 23, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation Program of China (NSFC)["U21B2029","U21A20456"]
WOS研究方向Computer Science ; Remote Sensing ; Telecommunications
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Remote Sensing ; Telecommunications
WOS记录号WOS:000889468500007
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20224813165002
EI主题词Gradient methods
EI分类号716 Telecommunication ; Radar, Radio and Television ; 718 Telephone Systems and Related Technologies ; Line Communications ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251429
专题信息科学与技术学院_PI研究组_周勇组
通讯作者Lee, Na
作者单位
1.Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Beijing Univ Posts & Telecommun, State Key Lab NST, Beijing 100876, Peoples R China
4.Huazhong Univ Sci & Technol, Key Lab DMET, Wuhan 430074, Peoples R China
推荐引用方式
GB/T 7714
Lee, Na,Shan, Hangguan,Song, Meiyan,et al. Decentralized Federated Learning under Communication Delays[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2022:37-42.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lee, Na]的文章
[Shan, Hangguan]的文章
[Song, Meiyan]的文章
百度学术
百度学术中相似的文章
[Lee, Na]的文章
[Shan, Hangguan]的文章
[Song, Meiyan]的文章
必应学术
必应学术中相似的文章
[Lee, Na]的文章
[Shan, Hangguan]的文章
[Song, Meiyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。