消息
×
loading..
Data-Driven Transmission Line Fault Location with Single-Ended Measurements and Knowledge-Aware Graph Neural Network
2022-07-21
会议录名称2022 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM)
ISSN1944-9925
发表状态已发表
DOI10.1109/PESGM48719.2022.9917184
摘要Transmission line fault location is one of the essential steps to ensure power supply reliability. Traditional model based methods and traveling wave based methods have limitations such as requirements of accurate line models/parameters or high sampling rates. On the other hand, most existing data-driven methods only utilize information within the raw data and fail to adopt prior physical knowledge. This paper proposes a data-driven fault location method based on knowledge-aware graph neural network (GNN) with single-ended measurements. Firstly, for different fault types, the graph structures are carefully designed to represent the inherent relationship among the measured voltage, measured current and the fault location, to incorporate prior physical knowledge. Afterwards, the GNN is adopted to achieve line fault location. The method only requires single-ended three phase voltage and current instantaneous measurements, with a relatively low sampling rate of 80 samples/cycle according to IEC61850-9-2 standard. Numerical experiments prove that the proposed GNN based fault location method has higher fault location accuracy compared to the existing multilayer perceptron (MLP) based fault location method.
关键词fault location graph neural network (GNN) single-ended physics-informed mode transformation
会议地点Denver, CO, USA
会议日期17-21 July 2022
URL查看原文
收录类别EI
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251428
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_PI研究组_刘宇组
信息科学与技术学院_博士生
通讯作者Liu, Yu
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xing, Yiqi,Liu, Yu,Nie, Yuan,et al. Data-Driven Transmission Line Fault Location with Single-Ended Measurements and Knowledge-Aware Graph Neural Network[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xing, Yiqi]的文章
[Liu, Yu]的文章
[Nie, Yuan]的文章
百度学术
百度学术中相似的文章
[Xing, Yiqi]的文章
[Liu, Yu]的文章
[Nie, Yuan]的文章
必应学术
必应学术中相似的文章
[Xing, Yiqi]的文章
[Liu, Yu]的文章
[Nie, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。