ShanghaiTech University Knowledge Management System
ARCS: Accurate Rotation and Correspondence Search | |
2022 | |
会议录名称 | PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION |
ISSN | 1063-6919 |
卷号 | 2022-June |
页码 | 11143-11153 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.01087 |
摘要 | This paper is about the old Wahba problem in its more general form, which we call 'simultaneous rotation and correspondence search'. In this generalization we need to find a rotation that best aligns two partially overlapping 3D point sets, of sizes m and n respectively with m\geq n. We first propose a solver, ARCS, that i) assumes noiseless point sets in general position, ii) requires only 2 inliers, iii) uses O(m\log m) time and O(m) space, and iv) can successfully solve the problem even with, e.g., m, napprox 106 in about 0.1 seconds. We next robustify ARCS to noise, for which we approximately solve consensus maximization problems using ideas from robust subspace learning and interval stabbing. Thirdly, we refine the approximately found consensus set by a Riemannian subgradient descent approach over the space of unit quaternions, which we show converges globally to an \varepsilon-stationary point in O(\varepsilon^{-4}) iterations, or locally to the ground-truth at a linear rate in the absence of noise. We combine these algorithms into ARCS+, to simultaneously search for rotations and correspondences. Experiments show that ARCS+ achieves state-of-the-art performance on large-scale datasets with more than 106 points with a 104 time-speedup over alternative methods. https://github.com/liangzu/ARCS © 2022 IEEE. |
会议名称 | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | New Orleans, LA, United states |
会议日期 | June 19, 2022 - June 24, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | NSF["1704458","1934979"] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870759104023 |
出版者 | IEEE Computer Society |
EI入藏号 | 20224613120320 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251424 |
专题 | 信息科学与技术学院_PI研究组_Manolis Tsakiris组 |
通讯作者 | Peng, Liangzu |
作者单位 | 1.Johns Hopkins Univ, Baltimore, MD 21218 USA 2.ShanghaiTech Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Peng, Liangzu,Tsakiris, Manolis C.,Vidal, Rene. ARCS: Accurate Rotation and Correspondence Search[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:11143-11153. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。