消息
×
loading..
Research of ultra-light InGaAs NIR face detection algorithm
2022-10
发表期刊HONGWAI YU JIGUANG GONGCHENG/INFRARED AND LASER ENGINEERING
ISSN1007-2276
卷号51期号:10
DOI10.3788/IRLA20220078
摘要InGaAs NIR detectors are widely used in aerospace, military and civilian fields. In order to realize the intelligence of InGaAs detectors, combined with face detection applications, an ultra-lightweight InGaAs NIR face detection algorithm that can be deployed in low-power mobile smart devices is proposed. This paper mainly studies the problems of few NIR face samples and low-power device deployment, and uses transfer learning and binary quantization to train the network. The algorithm first realizes a pre-trained face detection network based on SSD through a large-scale visible light face dataset. Then, the binary quantization scheme is used to greatly compress the network parameter space size and calculation amount, but the network accuracy is reduced at the same time. In order to further improve the effect of network binary quantization, this paper introduces feature mean information for the binary quantization process and makes up for the loss of accuracy in the form of adversarial convolution. Finally, the algorithm fine-tunes the pre-trained binary network through small-scale NIR face data to achieve the final network. The binarization face detection network implemented in this paper can achieve an average accuracy of 71.18% in the collected NIR face verification set. © 2022 Chinese Society of Astronautics. All rights reserved.
关键词Face recognition Gallium alloys Infrared devices Large dataset Low power electronics Semiconducting indium Semiconducting indium gallium arsenide Semiconductor alloys Binarizations Binary quantization Detection networks Face detection algorithm Faces detection InGaAs detectors Model compression NIR face detection SSD Ultra-light
收录类别EI ; 北大核心
语种中文
出版者Chinese Society of Astronautics
EI入藏号20224613117990
EI主题词Indium alloys
EI分类号549.3 Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals ; 712.1 Semiconducting Materials ; 712.1.1 Single Element Semiconducting Materials ; 712.1.2 Compound Semiconducting Materials ; 723.2 Data Processing and Image Processing
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248907
专题信息科学与技术学院_硕士生
通讯作者Fan, Guangyu; Gong, Haimei
作者单位
1.State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai; 200083, China;
2.Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai; 200083, China;
3.ShanghaiTech University, Shanghai; 201210, China
第一作者单位上海科技大学
推荐引用方式
GB/T 7714
Su, Yanyuan,Fan, Guangyu,Gong, Haimei,et al. Research of ultra-light InGaAs NIR face detection algorithm[J]. HONGWAI YU JIGUANG GONGCHENG/INFRARED AND LASER ENGINEERING,2022,51(10).
APA Su, Yanyuan,Fan, Guangyu,Gong, Haimei,Li, Xue,&Chen, Yongping.(2022).Research of ultra-light InGaAs NIR face detection algorithm.HONGWAI YU JIGUANG GONGCHENG/INFRARED AND LASER ENGINEERING,51(10).
MLA Su, Yanyuan,et al."Research of ultra-light InGaAs NIR face detection algorithm".HONGWAI YU JIGUANG GONGCHENG/INFRARED AND LASER ENGINEERING 51.10(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Su, Yanyuan]的文章
[Fan, Guangyu]的文章
[Gong, Haimei]的文章
百度学术
百度学术中相似的文章
[Su, Yanyuan]的文章
[Fan, Guangyu]的文章
[Gong, Haimei]的文章
必应学术
必应学术中相似的文章
[Su, Yanyuan]的文章
[Fan, Guangyu]的文章
[Gong, Haimei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。