See Clicks Differently: Modeling User Clicking Alternatively with Multi Classifiers for CTR Prediction
2022-10-17
会议录名称INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, PROCEEDINGS
页码4299-4303
发表状态已发表
DOI10.1145/3511808.3557694
摘要

Many recommender systems optimize click through rates (CTRs) as one of their core goals, and it further breaks down to predicting each item's click probability for a user (user-item click probability) and recommending the top ones to this particular user. User-item click probability is then estimated as a single term, and the basic assumption is that the user has different preferences over items. This is presumably true, but from real-world data, we observe that some people are naturally more active in clicking on items while some are not. This intrinsic tendency contributes to their user-item click probabilities. Besides this, when a user sees a particular item she likes, the click probability for this item increases due to this user-item preference. Therefore, instead of estimating the user-item click probability directly, we break it down into two finer attributes: user's intrinsic tendency of clicking and user-item preference. Inspired by studies that emphasize item features for overall enhancements and research progress in multi-task learning, we for the first time design a Multi Classifier Click Rate prediction model (MultiCR) to better exploit item-level information by building a separate classifier for each item. Furthermore, in addition to utilizing static user features, we learn implicit connections between user's item preferences and the often-overlooked indirect user behaviors (e.g., click histories from other services within the app). In a common new-campaign/new-service scenario, MultiCR outperforms various baselines in large-scale offline and online experiments and demonstrates good resilience when the amount of training data decreases. © 2022 Owner/Author.

会议录编者/会议主办者ACM SIGIR ; ACM SIGWEB ; Coveo ; et al. ; Kaiser Permanente ; Lowe's
关键词Behavioral research Forecasting Learning systems User profile Break down Click rates Click thought rate prediction Clickthrough rates (CTR) Indirect click history Multi-classifier Multitask learning Rate predictions Real-world Time design
会议名称31st ACM International Conference on Information and Knowledge Management, CIKM 2022
会议地点Atlanta, GA, United states
会议日期October 17, 2022 - October 21, 2022
收录类别EI
语种英语
出版者Association for Computing Machinery
EI入藏号20224413037852
EI主题词Classification (of information)
EI分类号461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis ; 971 Social Sciences
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243562
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张海鹏组
通讯作者Zhang, Haipeng
作者单位
1.Shanghaitech University, Shanghai, China;
2.Ant Group, Hangzhou, China;
3.Peking University, Beijing, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Lyu, Shiwei,Cai, Hongbo,Zhang, Chaohe,et al. See Clicks Differently: Modeling User Clicking Alternatively with Multi Classifiers for CTR Prediction[C]//ACM SIGIR, ACM SIGWEB, Coveo, et al., Kaiser Permanente, Lowe's:Association for Computing Machinery,2022:4299-4303.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lyu, Shiwei]的文章
[Cai, Hongbo]的文章
[Zhang, Chaohe]的文章
百度学术
百度学术中相似的文章
[Lyu, Shiwei]的文章
[Cai, Hongbo]的文章
[Zhang, Chaohe]的文章
必应学术
必应学术中相似的文章
[Lyu, Shiwei]的文章
[Cai, Hongbo]的文章
[Zhang, Chaohe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。