消息
×
loading..
An RRAM-based Neural Radiance Field Processor
2022
会议录名称INTERNATIONAL SYSTEM ON CHIP CONFERENCE
ISSN2164-1676
卷号2022-September
发表状态已发表
DOI10.1109/SOCC56010.2022.9908135
摘要

Photorealistic rendering of virtual scenes is a crucial task in the applications of augmented reality (AR), virtual reality (VR) and metaverse. Traditional rasterization or raytracing-based approaches usually involve a lot of manual efforts, making them unsuitable for mass production of virtual contents. The recently proposed Neural Radiance Fields (NeRF)-based technique demonstrated state-of-the-art results, but it demands a huge amount of computation. In this paper, we propose a resistive random access memory (RRAM)-based NeRF rendering accelerator. In the proposed accelerator, dataflow is specifically designed according to the parallel nature of NeRF-based rendering to increase the utilization of the RRAM array. Moreover, positional encoding engines are included in the proposed accelerator to reduce the off-chip memory bandwidth. Simulation results show that, for the execution of NeRF-based rendering, the overall performance and energy efficiency of the proposed accelerator is much higher than the existing GPU and TPU implementations. © 2022 IEEE.

会议录编者/会议主办者Catalyst ; IEEE Circuits and Systems Society ; Invest Northern Ireland ; Queens University Belfast ; Visit-Belfast
关键词Energy efficiency Rasterization Virtual reality Augmented reality Dataflow Mass production Metaverses Neural radiance field Photorealistic rendering Random access memory State of the art Virtual reality Virtual scenes
会议名称35th IEEE International System-on-Chip Conference, SOCC 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Belfast, Northern Ireland, United kingdom
会议日期September 5, 2022 - September 8, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:000885041700055
出版者IEEE Computer Society
EI入藏号20224413027745
EI主题词Augmented reality
EISSN2164-1706
EI分类号525.2 Energy Conservation ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243558
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_PI研究组_周平强组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
通讯作者Zhenga, Yueyang
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.BInnoStar Semicond Shanghai Co Ltd, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhenga, Yueyang,Raoa, Chaolin,Wana, Haochuan,et al. An RRAM-based Neural Radiance Field Processor[C]//Catalyst, IEEE Circuits and Systems Society, Invest Northern Ireland, Queens University Belfast, Visit-Belfast. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhenga, Yueyang]的文章
[Raoa, Chaolin]的文章
[Wana, Haochuan]的文章
百度学术
百度学术中相似的文章
[Zhenga, Yueyang]的文章
[Raoa, Chaolin]的文章
[Wana, Haochuan]的文章
必应学术
必应学术中相似的文章
[Zhenga, Yueyang]的文章
[Raoa, Chaolin]的文章
[Wana, Haochuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。