| |||||||
ShanghaiTech University Knowledge Management System
An RRAM-based Neural Radiance Field Processor | |
2022 | |
会议录名称 | INTERNATIONAL SYSTEM ON CHIP CONFERENCE |
ISSN | 2164-1676 |
卷号 | 2022-September |
发表状态 | 已发表 |
DOI | 10.1109/SOCC56010.2022.9908135 |
摘要 | Photorealistic rendering of virtual scenes is a crucial task in the applications of augmented reality (AR), virtual reality (VR) and metaverse. Traditional rasterization or raytracing-based approaches usually involve a lot of manual efforts, making them unsuitable for mass production of virtual contents. The recently proposed Neural Radiance Fields (NeRF)-based technique demonstrated state-of-the-art results, but it demands a huge amount of computation. In this paper, we propose a resistive random access memory (RRAM)-based NeRF rendering accelerator. In the proposed accelerator, dataflow is specifically designed according to the parallel nature of NeRF-based rendering to increase the utilization of the RRAM array. Moreover, positional encoding engines are included in the proposed accelerator to reduce the off-chip memory bandwidth. Simulation results show that, for the execution of NeRF-based rendering, the overall performance and energy efficiency of the proposed accelerator is much higher than the existing GPU and TPU implementations. © 2022 IEEE. |
会议录编者/会议主办者 | Catalyst ; IEEE Circuits and Systems Society ; Invest Northern Ireland ; Queens University Belfast ; Visit-Belfast |
关键词 | Energy efficiency Rasterization Virtual reality Augmented reality Dataflow Mass production Metaverses Neural radiance field Photorealistic rendering Random access memory State of the art Virtual reality Virtual scenes |
会议名称 | 35th IEEE International System-on-Chip Conference, SOCC 2022 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Belfast, Northern Ireland, United kingdom |
会议日期 | September 5, 2022 - September 8, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000885041700055 |
出版者 | IEEE Computer Society |
EI入藏号 | 20224413027745 |
EI主题词 | Augmented reality |
EISSN | 2164-1706 |
EI分类号 | 525.2 Energy Conservation ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243558 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
通讯作者 | Zhenga, Yueyang |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.BInnoStar Semicond Shanghai Co Ltd, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhenga, Yueyang,Raoa, Chaolin,Wana, Haochuan,et al. An RRAM-based Neural Radiance Field Processor[C]//Catalyst, IEEE Circuits and Systems Society, Invest Northern Ireland, Queens University Belfast, Visit-Belfast. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。