ShanghaiTech University Knowledge Management System
Nonconvex Demixing From Bilinear Measurements | |
2018-10-01 | |
发表期刊 | IEEE TRANSACTIONS ON SIGNAL PROCESSING (IF:4.6[JCR-2023],5.2[5-Year]) |
ISSN | 1053-587X |
EISSN | 1941-0476 |
卷号 | 66期号:19页码:5152-5166 |
发表状态 | 已发表 |
DOI | 10.1109/TSP.2018.2864660 |
摘要 | We consider the problem of demixing a sequence of source signals from the sum of noisy bilinear measurements. It is a generalized mathematical model for blind demixing with blind deconvolution, which is prevalent across the areas of dictionary learning, image processing, and communications. However, state-of-the-art convex methods for blind demixing via semidefinite programming are computationally infeasible for large-scale problems. Although the existing nonconvex algorithms are able to address the scaling issue, they normally require proper regularization to establish optimality guarantees. The additional regularization yields tedious algorithmic parameters and pessimistic convergence rates with conservative step sizes. To address the limitations of exiting methods, we thus develop a provable nonconvex demixing procedure via Wirtinger flow, much like vanilla gradient descent, to harness the benefits of regularization-free fast convergence rate with aggressive step size and computational optimality guarantees. This is achieved by exploiting the benign geometry of the blind demixing problem, thereby revealing that Wirtinger flow enforces the regularization-free iterates in the region of strong convexity and qualified level of smoothness, where the step size can be chosen aggressively. |
关键词 | Blind demixing blind deconvolution bilinear measurements nonconvex optimization Wirtinger flow regularization-free statistical and computational guarantee Blind Demixing Blind Deconvolution Bilinear Measurements Nonconvex Optimization Wirtinger Flow |
URL | 查看原文 |
收录类别 | SCIE ; EI ; SCI |
语种 | 英语 |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:000443987600007 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243316 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_石远明组 |
通讯作者 | Shi, Yuanming |
作者单位 | ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Dong, Jialin,Shi, Yuanming. Nonconvex Demixing From Bilinear Measurements[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2018,66(19):5152-5166. |
APA | Dong, Jialin,&Shi, Yuanming.(2018).Nonconvex Demixing From Bilinear Measurements.IEEE TRANSACTIONS ON SIGNAL PROCESSING,66(19),5152-5166. |
MLA | Dong, Jialin,et al."Nonconvex Demixing From Bilinear Measurements".IEEE TRANSACTIONS ON SIGNAL PROCESSING 66.19(2018):5152-5166. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Dong, Jialin]的文章 |
[Shi, Yuanming]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dong, Jialin]的文章 |
[Shi, Yuanming]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dong, Jialin]的文章 |
[Shi, Yuanming]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。