Dual-Space NeRF: Learning Animatable Avatars and Scene Lighting in Separate Spaces
2022-11
会议录名称INTERNATIONAL CONFERENCE ON 3D VISION 2022
ISSN2378-3826
发表状态已发表
DOI10.1109/3DV57658.2022.00048
摘要

Modeling the human body in a canonical space is a common practice for capturing and animation. But when involving the neural radiance field (NeRF), learning a static NeRF in the canonical space is not enough because the lighting of the body changes when the person moves even though the scene lighting is constant. Previous methods alleviate the inconsistency of lighting by learning a per-frame embedding, but this operation does not generalize to unseen poses. Given that the lighting condition is static in the world space while the human body is consistent in the canonical space, we propose a dual-space NeRF that models the scene lighting and the human body with two MLPs in two separate spaces. To bridge these two spaces, previous methods mostly rely on the linear blend skinning (LBS) algorithm. However, the blending weights for LBS of a dynamic neural field are intractable and thus are usually memorized with another MLP, which does not generalize to novel poses. Although it is possible to borrow the blending weights of a parametric mesh such as SMPL, the interpolation operation introduces more artifacts. In this paper, we propose to use the barycentric mapping, which can directly generalize to unseen poses and surprisingly achieves superior results than LBS with neural blending weights. Quantitative and qualitative results on the Human3.6M and the ZJU-MoCap datasets show the effectiveness of our method.

关键词Bridges Training Surface reconstruction Interpolation Three-dimensional displays Biological system modeling Lighting
会议地点Prague, Czech Republic
会议日期12-16 Sept. 2022
URL查看原文
收录类别SCI
语种英语
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/242783
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_博士生
作者单位
ShanghaiTech University
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yihao Zhi,Shenhan Qian,Xinhao Yan,et al. Dual-Space NeRF: Learning Animatable Avatars and Scene Lighting in Separate Spaces[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yihao Zhi]的文章
[Shenhan Qian]的文章
[Xinhao Yan]的文章
百度学术
百度学术中相似的文章
[Yihao Zhi]的文章
[Shenhan Qian]的文章
[Xinhao Yan]的文章
必应学术
必应学术中相似的文章
[Yihao Zhi]的文章
[Shenhan Qian]的文章
[Xinhao Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。