消息
×
loading..
Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks
2022-10
发表期刊MACHINE INTELLIGENCE RESEARCH (IF:6.4[JCR-2023],6.4[5-Year])
ISSN2731-538X
EISSN2731-5398
卷号19期号:5页码:456-471
DOI10.1007/s11633-022-1375-7
摘要Despite its great success, deep learning severely suffers from robustness; i.e., deep neural networks are very vulnerable to adversarial attacks, even the simplest ones. Inspired by recent advances in brain science, we propose the denoised internal models (DIM), a novel generative autoencoder-based model to tackle this challenge. Simulating the pipeline in the human brain for visual signal processing, DIM adopts a two-stage approach. In the first stage, DIM uses a denoiser to reduce the noise and the dimensions of inputs, reflecting the information pre-processing in the thalamus. Inspired by the sparse coding of memory-related traces in the primary visual cortex, the second stage produces a set of internal models, one for each category. We evaluate DIM over 42 adversarial attacks, showing that DIM effectively defenses against all the attacks and outperforms the SOTA on the overall robustness on the MNIST (Modified National Institute of Standards and Technology) dataset. © 2022, Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature.
关键词Brain Learning systems Long short-term memory Pipeline processing systems Signal processing Adversarial attack Auto encoders Brain science Brain-inspired Brain-inspired learning Generative model Human brain Internal models Robustness Simple++
URL查看原文
收录类别EI ; ESCI
语种英语
出版者Chinese Academy of Sciences
EI入藏号20224112860287
EI主题词Deep neural networks
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 722.4 Digital Computers and Systems
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/241086
专题信息科学与技术学院_硕士生
信息科学与技术学院_外聘教师
生命科学与技术学院_PI研究组_管吉松组
信息科学与技术学院_本科生
信息科学与技术学院_博士生
通讯作者Guan, Ji-Song; Zhou, Yi
作者单位
1.School of Life Sciences and Technology, ShanghaiTech University, Shanghai; 201210, China;
2.Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai; 201602, China;
3.School of Life Sciences, Tsinghua University, Beijing; 100084, China;
4.National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei; 230026, China;
5.Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai; 200093, China;
6.Centre for Artificial-intelligence Nanophotonics, School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai; 200093, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Liu, Kai-Yuan,Li, Xing-Yu,Lai, Yu-Rui,et al. Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks[J]. MACHINE INTELLIGENCE RESEARCH,2022,19(5):456-471.
APA Liu, Kai-Yuan.,Li, Xing-Yu.,Lai, Yu-Rui.,Su, Hang.,Wang, Jia-Chen.,...&Zhou, Yi.(2022).Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks.MACHINE INTELLIGENCE RESEARCH,19(5),456-471.
MLA Liu, Kai-Yuan,et al."Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks".MACHINE INTELLIGENCE RESEARCH 19.5(2022):456-471.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Kai-Yuan]的文章
[Li, Xing-Yu]的文章
[Lai, Yu-Rui]的文章
百度学术
百度学术中相似的文章
[Liu, Kai-Yuan]的文章
[Li, Xing-Yu]的文章
[Lai, Yu-Rui]的文章
必应学术
必应学术中相似的文章
[Liu, Kai-Yuan]的文章
[Li, Xing-Yu]的文章
[Lai, Yu-Rui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s11633-022-1375-7.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。