| |||||||
ShanghaiTech University Knowledge Management System
Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks | |
2022-10 | |
发表期刊 | MACHINE INTELLIGENCE RESEARCH (IF:6.4[JCR-2023],6.4[5-Year]) |
ISSN | 2731-538X |
EISSN | 2731-5398 |
卷号 | 19期号:5页码:456-471 |
DOI | 10.1007/s11633-022-1375-7 |
摘要 | Despite its great success, deep learning severely suffers from robustness; i.e., deep neural networks are very vulnerable to adversarial attacks, even the simplest ones. Inspired by recent advances in brain science, we propose the denoised internal models (DIM), a novel generative autoencoder-based model to tackle this challenge. Simulating the pipeline in the human brain for visual signal processing, DIM adopts a two-stage approach. In the first stage, DIM uses a denoiser to reduce the noise and the dimensions of inputs, reflecting the information pre-processing in the thalamus. Inspired by the sparse coding of memory-related traces in the primary visual cortex, the second stage produces a set of internal models, one for each category. We evaluate DIM over 42 adversarial attacks, showing that DIM effectively defenses against all the attacks and outperforms the SOTA on the overall robustness on the MNIST (Modified National Institute of Standards and Technology) dataset. © 2022, Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature. |
关键词 | Brain Learning systems Long short-term memory Pipeline processing systems Signal processing Adversarial attack Auto encoders Brain science Brain-inspired Brain-inspired learning Generative model Human brain Internal models Robustness Simple++ |
URL | 查看原文 |
收录类别 | EI ; ESCI |
语种 | 英语 |
出版者 | Chinese Academy of Sciences |
EI入藏号 | 20224112860287 |
EI主题词 | Deep neural networks |
EI分类号 | 461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 722.4 Digital Computers and Systems |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/241086 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_外聘教师 生命科学与技术学院_PI研究组_管吉松组 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
通讯作者 | Guan, Ji-Song; Zhou, Yi |
作者单位 | 1.School of Life Sciences and Technology, ShanghaiTech University, Shanghai; 201210, China; 2.Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai; 201602, China; 3.School of Life Sciences, Tsinghua University, Beijing; 100084, China; 4.National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei; 230026, China; 5.Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai; 200093, China; 6.Centre for Artificial-intelligence Nanophotonics, School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai; 200093, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Liu, Kai-Yuan,Li, Xing-Yu,Lai, Yu-Rui,et al. Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks[J]. MACHINE INTELLIGENCE RESEARCH,2022,19(5):456-471. |
APA | Liu, Kai-Yuan.,Li, Xing-Yu.,Lai, Yu-Rui.,Su, Hang.,Wang, Jia-Chen.,...&Zhou, Yi.(2022).Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks.MACHINE INTELLIGENCE RESEARCH,19(5),456-471. |
MLA | Liu, Kai-Yuan,et al."Denoised Internal Models: A Brain-inspired Autoencoder Against Adversarial Attacks".MACHINE INTELLIGENCE RESEARCH 19.5(2022):456-471. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。