ShanghaiTech University Knowledge Management System
Progressive Deep Segmentation of Coronary Artery via Hierarchical Topology Learning | |
2022 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 13435 LNCS |
页码 | 391-400 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-16443-9_38 |
摘要 | Coronary artery segmentation is a critical yet challenging step in coronary artery stenosis diagnosis. Most existing studies ignore important contextual anatomical information and vascular topologies, leading to limited performance. To this end, this paper proposes a progressive deep-learning based framework for accurate coronary artery segmentation by leveraging contextual anatomical information and vascular topologies. The proposed framework consists of a spatial anatomical dependency (SAD) module and a hierarchical topology learning (HTL) module. Specifically, the SAD module coarsely segments heart chambers and coronary artery for region proposals, and captures spatial relationship between coronary artery and heart chambers. Then, the HTL module adopts a multi-task learning mechanism to improve the coarse coronary artery segmentation by simultaneously predicting the hierarchical vascular topologies i.e., key points, centerlines, and neighboring cube-connectivity. Extensive evaluations, ablation studies, and comparisons with existing methods show that our method achieves state-of-the-art segmentation performance. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. |
关键词 | Deep learning Diagnosis Learning systems Medical imaging Topology Anatomical information Coronary arteries Coronary artery segmentation Hierarchical topology Hierarchical topology representation Learning modules Multitask learning Spatial anatomical dependency Topology learning Vascular topology |
会议名称 | 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 |
会议地点 | Singapore, Singapore |
会议日期 | September 18, 2022 - September 22, 2022 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20224012829538 |
EI主题词 | Heart |
EISSN | 1611-3349 |
EI分类号 | 461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 746 Imaging Techniques ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/240501 |
专题 | 信息科学与技术学院 生命科学与技术学院_PI研究组_周智组 科技发展处 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Feng, Jun; Shen, Dinggang |
作者单位 | 1.School of Information Science and Technology, Northwest University, Xi’an, China; 2.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; 3.School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia; 4.Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhang, Xiao,Zhang, Jingyang,Ma, Lei,et al. Progressive Deep Segmentation of Coronary Artery via Hierarchical Topology Learning[C]:Springer Science and Business Media Deutschland GmbH,2022:391-400. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。