Progressive Deep Segmentation of Coronary Artery via Hierarchical Topology Learning
2022
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号13435 LNCS
页码391-400
发表状态已发表
DOI10.1007/978-3-031-16443-9_38
摘要

Coronary artery segmentation is a critical yet challenging step in coronary artery stenosis diagnosis. Most existing studies ignore important contextual anatomical information and vascular topologies, leading to limited performance. To this end, this paper proposes a progressive deep-learning based framework for accurate coronary artery segmentation by leveraging contextual anatomical information and vascular topologies. The proposed framework consists of a spatial anatomical dependency (SAD) module and a hierarchical topology learning (HTL) module. Specifically, the SAD module coarsely segments heart chambers and coronary artery for region proposals, and captures spatial relationship between coronary artery and heart chambers. Then, the HTL module adopts a multi-task learning mechanism to improve the coarse coronary artery segmentation by simultaneously predicting the hierarchical vascular topologies i.e., key points, centerlines, and neighboring cube-connectivity. Extensive evaluations, ablation studies, and comparisons with existing methods show that our method achieves state-of-the-art segmentation performance. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词Deep learning Diagnosis Learning systems Medical imaging Topology Anatomical information Coronary arteries Coronary artery segmentation Hierarchical topology Hierarchical topology representation Learning modules Multitask learning Spatial anatomical dependency Topology learning Vascular topology
会议名称25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
会议地点Singapore, Singapore
会议日期September 18, 2022 - September 22, 2022
收录类别EI ; CPCI ; CPCI-S
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20224012829538
EI主题词Heart
EISSN1611-3349
EI分类号461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 746 Imaging Techniques ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/240501
专题信息科学与技术学院
生命科学与技术学院_PI研究组_周智组
科技发展处
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Feng, Jun; Shen, Dinggang
作者单位
1.School of Information Science and Technology, Northwest University, Xi’an, China;
2.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China;
3.School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia;
4.Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Zhang, Xiao,Zhang, Jingyang,Ma, Lei,et al. Progressive Deep Segmentation of Coronary Artery via Hierarchical Topology Learning[C]:Springer Science and Business Media Deutschland GmbH,2022:391-400.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiao]的文章
[Zhang, Jingyang]的文章
[Ma, Lei]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiao]的文章
[Zhang, Jingyang]的文章
[Ma, Lei]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiao]的文章
[Zhang, Jingyang]的文章
[Ma, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。