Trustworthy Federated Learning via Blockchain
2023
发表期刊IEEE INTERNET OF THINGS JOURNAL
ISSN2327-4662
EISSN2327-4662
卷号10期号:1页码:1-1
发表状态已发表
DOI10.1109/JIOT.2022.3201117
摘要The safety-critical scenarios of artificial intelligence (AI), such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this paper, we shall propose a decentralized blockchain based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by deep reinforcement learning based algorithm compared with baseline algorithms. IEEE
关键词Blockchain Deep learning Energy utilization Fault tolerance Internet protocols Learning algorithms Markov processes Network architecture Network security Reinforcement learning Resource allocation Safety engineering Block-chain Computational modelling Consensus protocols Federated learning Long-term latency minimization Minimisation Resource management Resources allocation Trustworthy artificial intelligence Wireless communications
URL查看原文
收录类别EI ; SCI ; SCOPUS
语种英语
资助项目Shanghai Rising-Star Program[22QA1406100] ; Natural Science Foundation of Shanghai[21ZR1442700] ; National Natural Science Foundation of China (NSFC)["U20A20159","62001294"]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000911309300008
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20223712721086
EI主题词Optimization
EI分类号461.4 Ergonomics and Human Factors Engineering ; 525.3 Energy Utilization ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 723.3 Database Systems ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 912.2 Management ; 914 Safety Engineering ; 921.5 Optimization Techniques ; 922.1 Probability Theory
原始文献类型Article in Press
来源库IEEE
引用统计
被引频次:37[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/229866
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_博士生
通讯作者Shi, Yuanming
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.JD Technol Grp, Beijing 100176, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yang, Zhanpeng,Shi, Yuanming,Zhou, Yong,et al. Trustworthy Federated Learning via Blockchain[J]. IEEE INTERNET OF THINGS JOURNAL,2023,10(1):1-1.
APA Yang, Zhanpeng,Shi, Yuanming,Zhou, Yong,Wang, Zixin,&Yang, Kai.(2023).Trustworthy Federated Learning via Blockchain.IEEE INTERNET OF THINGS JOURNAL,10(1),1-1.
MLA Yang, Zhanpeng,et al."Trustworthy Federated Learning via Blockchain".IEEE INTERNET OF THINGS JOURNAL 10.1(2023):1-1.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Zhanpeng]的文章
[Shi, Yuanming]的文章
[Zhou, Yong]的文章
百度学术
百度学术中相似的文章
[Yang, Zhanpeng]的文章
[Shi, Yuanming]的文章
[Zhou, Yong]的文章
必应学术
必应学术中相似的文章
[Yang, Zhanpeng]的文章
[Shi, Yuanming]的文章
[Zhou, Yong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@JIOT.2022.3201117.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。