消息
×
loading..
Generalized Multiple Kernel Learning With Data-Dependent Priors
2015-06
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (IF:10.2[JCR-2023],10.4[5-Year])
ISSN2162-237X
卷号26期号:6页码:1134-1148
发表状态已发表
DOI10.1109/TNNLS.2014.2334137
摘要Multiple kernel learning (MKL) and classifier ensemble are two mainstream methods for solving learning problems in which some sets of features/views are more informative than others, or the features/views within a given set are inconsistent. In this paper, we first present a novel probabilistic interpretation of MKL such that maximum entropy discrimination with a noninformative prior over multiple views is equivalent to the formulation of MKL. Instead of using the noninformative prior, we introduce a novel data-dependent prior based on an ensemble of kernel predictors, which enhances the prediction performance of MKL by leveraging the merits of the classifier ensemble. With the proposed probabilistic framework of MKL, we propose a hierarchical Bayesian model to learn the proposed data-dependent prior and classification model simultaneously. The resultant problem is convex and other information (e.g., instances with either missing views or missing labels) can be seamlessly incorporated into the data-dependent priors. Furthermore, a variety of existing MKL models can be recovered under the proposed MKL framework and can be readily extended to incorporate these priors. Extensive experiments demonstrate the benefits of our proposed framework in supervised and semisupervised settings, as well as in tasks with partial correspondence among multiple views.
关键词Data fusion dirty data missing views multiple kernel learning partial correspondence semisupervised learning
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Australian Research Council[FT130100746]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000354957000002
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20152200894306
EI主题词Bayesian networks
EI分类号Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
WOS关键词PREDICTION
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2206
专题信息科学与技术学院_PI研究组_高盛华组
作者单位
1.Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
2.Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Ultimo, NSW, Australia
3.ShanghaiTech University, Shanghai, China
4.Department of Mathematics, University of California at San Diego, La Jolla, CA, USA
推荐引用方式
GB/T 7714
Qi Mao,Ivor W. Tsang,Shenghua Gao,et al. Generalized Multiple Kernel Learning With Data-Dependent Priors[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(6):1134-1148.
APA Qi Mao,Ivor W. Tsang,Shenghua Gao,&Li Wang.(2015).Generalized Multiple Kernel Learning With Data-Dependent Priors.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(6),1134-1148.
MLA Qi Mao,et al."Generalized Multiple Kernel Learning With Data-Dependent Priors".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.6(2015):1134-1148.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qi Mao]的文章
[Ivor W. Tsang]的文章
[Shenghua Gao]的文章
百度学术
百度学术中相似的文章
[Qi Mao]的文章
[Ivor W. Tsang]的文章
[Shenghua Gao]的文章
必应学术
必应学术中相似的文章
[Qi Mao]的文章
[Ivor W. Tsang]的文章
[Shenghua Gao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2206.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。