ShanghaiTech University Knowledge Management System
Diagnosing phenotypes of single-sample individuals by edge biomarkers | |
2015-06 | |
发表期刊 | JOURNAL OF MOLECULAR CELL BIOLOGY (IF:5.3[JCR-2023],6.1[5-Year]) |
ISSN | 1674-2788 |
卷号 | 7期号:3页码:231-241 |
发表状态 | 已发表 |
DOI | 10.1093/jmcb/mjv025 |
摘要 | Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes ina network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. |
关键词 | edge biomarker edge feature progressive stages disease diagnosis big biological data |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Knowledge Innovation Program of SIBS of CAS[2013KIP218] |
WOS研究方向 | Cell Biology |
WOS类目 | Cell Biology |
WOS记录号 | WOS:000357857100005 |
出版者 | OXFORD UNIV PRESS |
WOS关键词 | IDENTIFYING CRITICAL TRANSITIONS ; UNFOLDED PROTEIN RESPONSE ; BREAST-CANCER CELLS ; P53 MESSENGER-RNA ; COMPLEX DISEASES ; NETWORK BIOMARKERS ; TUMOR-METASTASIS ; PATHWAY ; PROGRESSION ; PREDICTION |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2203 |
专题 | 生命科学与技术学院_特聘教授组_陈洛南组 |
通讯作者 | Chen, Luonan |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Key Lab Syst Biol,Innovat Ctr Cell Signaling Netw, Shanghai 200031, Peoples R China 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China |
通讯作者单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Wanwei,Zeng, Tao,Liu, Xiaoping,et al. Diagnosing phenotypes of single-sample individuals by edge biomarkers[J]. JOURNAL OF MOLECULAR CELL BIOLOGY,2015,7(3):231-241. |
APA | Zhang, Wanwei,Zeng, Tao,Liu, Xiaoping,&Chen, Luonan.(2015).Diagnosing phenotypes of single-sample individuals by edge biomarkers.JOURNAL OF MOLECULAR CELL BIOLOGY,7(3),231-241. |
MLA | Zhang, Wanwei,et al."Diagnosing phenotypes of single-sample individuals by edge biomarkers".JOURNAL OF MOLECULAR CELL BIOLOGY 7.3(2015):231-241. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。