ShanghaiTech University Knowledge Management System
Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold | |
2015-07-21 | |
发表期刊 | NEUROCOMPUTING (IF:5.5[JCR-2023],5.5[5-Year]) |
ISSN | 0925-2312 |
卷号 | 160页码:250-260 |
发表状态 | 已发表 |
DOI | 10.1016/j.neucom.2015.02.023 |
摘要 | A key factor contributing to the success of many auto-encoders based deep learning techniques is the implicit consideration of the underlying data manifold in their training criteria. In this paper, we aim to make this consideration more explicit by training auto-encoders completely from the manifold learning perspective. We propose a novel unsupervised manifold learning method termed Laplacian Auto-Encoders (LAEs). Starting from a general regularized function learning framework, LAE regularizes training of auto-encoders so that the learned encoding function has the locality-preserving property for data points on the manifold. By exploiting the analog relation between the graph Laplacian and the Laplace-Beltrami operator on the continuous manifold, we derive discrete approximations of the first- and higher-order auto-encoder regularizers that can be applied in practical scenarios, where only data points sampled from the distribution on the manifold are available. Our proposed LAE has potentially better generalization capability, due to its explicit respect of the underlying data manifold. Extensive experiments on benchmark visual classification datasets show that LAE consistently outperforms alternative auto-encoders recently proposed in deep learning literature, especially when training samples are relatively scarce: (C) 2015 Elsevier B.V. All rights reserved. |
关键词 | Auto-encoders Deep learning Manifold learning Image classification |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61202158] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000354139100022 |
出版者 | ELSEVIER SCIENCE BV |
EI入藏号 | 20151200672876 |
EI主题词 | Classification (of information) ; Face recognition ; Image classification ; Laplace transforms |
WOS关键词 | DIMENSIONALITY REDUCTION ; IMAGE ; EIGENMAPS |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2174 |
专题 | 信息科学与技术学院_PI研究组_高盛华组 |
通讯作者 | Jia, Kui |
作者单位 | 1.Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Macau, Peoples R China 2.Adv Digital Sci Ctr, Singapore 138632, Singapore 3.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China 4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 5.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 | Jia, Kui,Sun, Lin,Gao, Shenghua,et al. Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold[J]. NEUROCOMPUTING,2015,160:250-260. |
APA | Jia, Kui,Sun, Lin,Gao, Shenghua,Song, Zhan,&Shi, Bertram E..(2015).Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold.NEUROCOMPUTING,160,250-260. |
MLA | Jia, Kui,et al."Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold".NEUROCOMPUTING 160(2015):250-260. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jia, Kui]的文章 |
[Sun, Lin]的文章 |
[Gao, Shenghua]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jia, Kui]的文章 |
[Sun, Lin]的文章 |
[Gao, Shenghua]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jia, Kui]的文章 |
[Sun, Lin]的文章 |
[Gao, Shenghua]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。