Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold
2015-07-21
发表期刊NEUROCOMPUTING (IF:5.5[JCR-2023],5.5[5-Year])
ISSN0925-2312
卷号160页码:250-260
发表状态已发表
DOI10.1016/j.neucom.2015.02.023
摘要A key factor contributing to the success of many auto-encoders based deep learning techniques is the implicit consideration of the underlying data manifold in their training criteria. In this paper, we aim to make this consideration more explicit by training auto-encoders completely from the manifold learning perspective. We propose a novel unsupervised manifold learning method termed Laplacian Auto-Encoders (LAEs). Starting from a general regularized function learning framework, LAE regularizes training of auto-encoders so that the learned encoding function has the locality-preserving property for data points on the manifold. By exploiting the analog relation between the graph Laplacian and the Laplace-Beltrami operator on the continuous manifold, we derive discrete approximations of the first- and higher-order auto-encoder regularizers that can be applied in practical scenarios, where only data points sampled from the distribution on the manifold are available. Our proposed LAE has potentially better generalization capability, due to its explicit respect of the underlying data manifold. Extensive experiments on benchmark visual classification datasets show that LAE consistently outperforms alternative auto-encoders recently proposed in deep learning literature, especially when training samples are relatively scarce: (C) 2015 Elsevier B.V. All rights reserved.
关键词Auto-encoders Deep learning Manifold learning Image classification
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[61202158]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000354139100022
出版者ELSEVIER SCIENCE BV
EI入藏号20151200672876
EI主题词Classification (of information) ; Face recognition ; Image classification ; Laplace transforms
WOS关键词DIMENSIONALITY REDUCTION ; IMAGE ; EIGENMAPS
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2174
专题信息科学与技术学院_PI研究组_高盛华组
通讯作者Jia, Kui
作者单位
1.Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Macau, Peoples R China
2.Adv Digital Sci Ctr, Singapore 138632, Singapore
3.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
5.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Jia, Kui,Sun, Lin,Gao, Shenghua,et al. Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold[J]. NEUROCOMPUTING,2015,160:250-260.
APA Jia, Kui,Sun, Lin,Gao, Shenghua,Song, Zhan,&Shi, Bertram E..(2015).Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold.NEUROCOMPUTING,160,250-260.
MLA Jia, Kui,et al."Laplacian Auto-Encoders: An explicit learning of nonlinear data manifold".NEUROCOMPUTING 160(2015):250-260.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jia, Kui]的文章
[Sun, Lin]的文章
[Gao, Shenghua]的文章
百度学术
百度学术中相似的文章
[Jia, Kui]的文章
[Sun, Lin]的文章
[Gao, Shenghua]的文章
必应学术
必应学术中相似的文章
[Jia, Kui]的文章
[Sun, Lin]的文章
[Gao, Shenghua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2174.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。