消息
×
loading..
Joint analysis of scATAC-seq datasets using epiConv
2022-12
发表期刊BMC BIOINFORMATICS (IF:2.9[JCR-2023],3.6[5-Year])
EISSN1471-2105
卷号23期号:1
发表状态已发表
DOI10.1186/s12859-022-04858-w
摘要Background: Technical improvement in ATAC-seq makes it possible for high throughput profiling the chromatin states of single cells. However, data from multiple sources frequently show strong technical variations, which is referred to as batch effects. In order to perform joint analysis across multiple datasets, specialized method is required to remove technical variations between datasets while keep biological information. Results: Here we present an algorithm named epiConv to perform joint analyses on scATAC-seq datasets. We first show that epiConv better corrects batch effects and is less prone to over-fitting problem than existing methods on a collection of PBMC datasets. In a collection of mouse brain data, we show that epiConv is capable of aligning low-depth scATAC-Seq from co-assay data (simultaneous profiling of transcriptome and chromatin) onto high-quality ATAC-seq reference and increasing the resolution of chromatin profiles of co-assay data. Finally, we show that epiConv can be used to integrate cells from different biological conditions (T cells in normal vs. germ-free mouse; normal vs. malignant hematopoiesis), which reveals hidden cell populations that would otherwise be undetectable. Conclusions: In this study, we introduce epiConv to integrate multiple scATAC-seq datasets and perform joint analysis on them. Through several case studies, we show that epiConv removes the batch effects and retains the biological signal. Moreover, joint analysis across multiple datasets improves the performance of clustering and differentially accessible peak calling, especially when the biological signal is weak in single dataset. © 2022, The Author(s).
关键词Cell culture Batch effect Cell proliferation Biological signals Chromosomes Cell clustering Depth profiling High-throughput Joint analysis Multiple data sets Multiple source ScATAC-seq Single cells Technical improvement
URL查看原文
收录类别EI ; SCIE
语种英语
出版者BioMed Central Ltd
EI入藏号20223112472830
EI主题词Data integration
EI分类号461.2 Biological Materials and Tissue Engineering;461.9 Biology;723.2 Data Processing and Image Processing;801 Chemistry
原始文献类型Journal article (JA)
Scopus 记录号2-s2.0-85135171725
来源库Scopus
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211740
专题生命科学与技术学院_PI研究组_张力烨组
生命科学与技术学院_PI研究组_孙建龙组
通讯作者Lin, Li; Zhang, Liye
作者单位
School of Life Science and Technology,ShanghaiTech University,Shanghai,China
第一作者单位生命科学与技术学院
通讯作者单位生命科学与技术学院
第一作者的第一单位生命科学与技术学院
推荐引用方式
GB/T 7714
Lin, Li,Zhang, Liye. Joint analysis of scATAC-seq datasets using epiConv[J]. BMC BIOINFORMATICS,2022,23(1).
APA Lin, Li,&Zhang, Liye.(2022).Joint analysis of scATAC-seq datasets using epiConv.BMC BIOINFORMATICS,23(1).
MLA Lin, Li,et al."Joint analysis of scATAC-seq datasets using epiConv".BMC BIOINFORMATICS 23.1(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Li]的文章
[Zhang, Liye]的文章
百度学术
百度学术中相似的文章
[Lin, Li]的文章
[Zhang, Liye]的文章
必应学术
必应学术中相似的文章
[Lin, Li]的文章
[Zhang, Liye]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1186@s12859-022-04858-w.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。