| |||||||
ShanghaiTech University Knowledge Management System
Joint analysis of scATAC-seq datasets using epiConv | |
2022-12 | |
发表期刊 | BMC BIOINFORMATICS (IF:2.9[JCR-2023],3.6[5-Year]) |
EISSN | 1471-2105 |
卷号 | 23期号:1 |
发表状态 | 已发表 |
DOI | 10.1186/s12859-022-04858-w |
摘要 | Background: Technical improvement in ATAC-seq makes it possible for high throughput profiling the chromatin states of single cells. However, data from multiple sources frequently show strong technical variations, which is referred to as batch effects. In order to perform joint analysis across multiple datasets, specialized method is required to remove technical variations between datasets while keep biological information. Results: Here we present an algorithm named epiConv to perform joint analyses on scATAC-seq datasets. We first show that epiConv better corrects batch effects and is less prone to over-fitting problem than existing methods on a collection of PBMC datasets. In a collection of mouse brain data, we show that epiConv is capable of aligning low-depth scATAC-Seq from co-assay data (simultaneous profiling of transcriptome and chromatin) onto high-quality ATAC-seq reference and increasing the resolution of chromatin profiles of co-assay data. Finally, we show that epiConv can be used to integrate cells from different biological conditions (T cells in normal vs. germ-free mouse; normal vs. malignant hematopoiesis), which reveals hidden cell populations that would otherwise be undetectable. Conclusions: In this study, we introduce epiConv to integrate multiple scATAC-seq datasets and perform joint analysis on them. Through several case studies, we show that epiConv removes the batch effects and retains the biological signal. Moreover, joint analysis across multiple datasets improves the performance of clustering and differentially accessible peak calling, especially when the biological signal is weak in single dataset. © 2022, The Author(s). |
关键词 | Cell culture Batch effect Cell proliferation Biological signals Chromosomes Cell clustering Depth profiling High-throughput Joint analysis Multiple data sets Multiple source ScATAC-seq Single cells Technical improvement |
URL | 查看原文 |
收录类别 | EI ; SCIE |
语种 | 英语 |
出版者 | BioMed Central Ltd |
EI入藏号 | 20223112472830 |
EI主题词 | Data integration |
EI分类号 | 461.2 Biological Materials and Tissue Engineering;461.9 Biology;723.2 Data Processing and Image Processing;801 Chemistry |
原始文献类型 | Journal article (JA) |
Scopus 记录号 | 2-s2.0-85135171725 |
来源库 | Scopus |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211740 |
专题 | 生命科学与技术学院_PI研究组_张力烨组 生命科学与技术学院_PI研究组_孙建龙组 |
通讯作者 | Lin, Li; Zhang, Liye |
作者单位 | School of Life Science and Technology,ShanghaiTech University,Shanghai,China |
第一作者单位 | 生命科学与技术学院 |
通讯作者单位 | 生命科学与技术学院 |
第一作者的第一单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Lin, Li,Zhang, Liye. Joint analysis of scATAC-seq datasets using epiConv[J]. BMC BIOINFORMATICS,2022,23(1). |
APA | Lin, Li,&Zhang, Liye.(2022).Joint analysis of scATAC-seq datasets using epiConv.BMC BIOINFORMATICS,23(1). |
MLA | Lin, Li,et al."Joint analysis of scATAC-seq datasets using epiConv".BMC BIOINFORMATICS 23.1(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lin, Li]的文章 |
[Zhang, Liye]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lin, Li]的文章 |
[Zhang, Liye]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lin, Li]的文章 |
[Zhang, Liye]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。