ShanghaiTech University Knowledge Management System
Enhanced Group Sparse Beamforming for Green Cloud-RAN: A Random Matrix Approach | |
2018-04 | |
发表期刊 | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
![]() |
ISSN | 1536-1276 |
卷号 | 17期号:4页码:2511-2524 |
发表状态 | 已发表 |
DOI | 10.1109/TWC.2018.2797203 |
摘要 | Group sparse beamforming is a general framework to minimize the network power consumption for cloud radio access networks, which, however, suffers high computational complexity. In particular, a complex optimization problem needs to be solved to obtain the remote radio head (RRH) ordering criterion in each transmission block, which will help to determine the active RRHs and the associated fronthaul links. In this paper, we propose innovative approaches to reduce the complexity of this key step in group sparse beamforming. Specifically, we first develop a smoothed l(p)-minimization approach with the iterative reweighted-l(2) algorithm to return a Karush-Kuhn-Tucker (KKT) point solution, as well as enhance the capability of inducing group sparsity in the beamforming vectors. By leveraging the Lagrangian duality theory, we obtain closed-form solutions at each iteration to reduce the computational complexity. The well-structured solutions provide opportunities to apply the large-dimensional random matrix theory to derive deterministic approximations for the RRH ordering criterion. Such an approach helps to guide the RRH selection only based on the statistical channel state information, which does not require frequent update, thereby significantly reducing the computation overhead. Simulation results shall demonstrate the performance gains of the proposed l(p)-minimization approach, as well as the effectiveness of the large system analysis-based framework for computing the RRH ordering criterion. |
关键词 | Cloud-RAN green communications sparse optimization smoothed l(p)-minimization Lagrangian duality and random matrix theory Cloud-ran , Green Communications , Sparse Optimization , Smoothed Lp-minimization , Lagrangian Duality , Random Matrix Theory |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; CPCI |
语种 | 英语 |
资助项目 | Chinese National 973 Program[2013CB336600] |
WOS研究方向 | Engineering ; Telecommunications |
WOS类目 | Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000429695900028 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS关键词 | RADIO ACCESS NETWORKS ; LARGE SYSTEM-ANALYSIS ; SCALE CONVEX-OPTIMIZATION ; BASE STATION COOPERATION ; HETEROGENEOUS NETWORKS ; MINIMIZATION ; DOWNLINK ; MIMO ; 5G ; DENSIFICATION |
原始文献类型 | Article ; Proceedings Paper |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/20181 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong 3.Department of Electronic Engineering, Tsinghua University, Beijing, China 4.Hamad Bin Khalifa University, Doha, Qatar |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yuanming Shi,Jun Zhang,Wei Chen,et al. Enhanced Group Sparse Beamforming for Green Cloud-RAN: A Random Matrix Approach[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2018,17(4):2511-2524. |
APA | Yuanming Shi,Jun Zhang,Wei Chen,&Khaled B. Letaief.(2018).Enhanced Group Sparse Beamforming for Green Cloud-RAN: A Random Matrix Approach.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,17(4),2511-2524. |
MLA | Yuanming Shi,et al."Enhanced Group Sparse Beamforming for Green Cloud-RAN: A Random Matrix Approach".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 17.4(2018):2511-2524. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yuanming Shi]的文章 |
[Jun Zhang]的文章 |
[Wei Chen]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yuanming Shi]的文章 |
[Jun Zhang]的文章 |
[Wei Chen]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yuanming Shi]的文章 |
[Jun Zhang]的文章 |
[Wei Chen]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。