LIGS: LEARNABLE INTRINSIC-REWARD GENERATION SELECTION FOR MULTI-AGENT LEARNING
2022-04
会议录名称THE TENTH INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS
发表状态正式接收
DOIarxiv-2112.02618
摘要Efficient exploration is important for reinforcement learners to achieve high rewards. In multi-agent systems, coordinated exploration and behaviour is critical for agents to jointly achieve optimal outcomes. In this paper, we introduce a new general framework for improving coordination and performance of multi-agent reinforcement learners (MARL). Our framework, named Learnable Intrinsic-Reward Generation Selection algorithm (LIGS) introduces an adaptive learner, Generator that observes the agents and learns to construct intrinsic rewards online that coordinate the agents' joint exploration and joint behaviour. Using a novel combination of MARL and switching controls, LIGS determines the best states to learn to add intrinsic rewards which leads to a highly efficient learning process. LIGS can subdivide complex tasks making them easier to solve and enables systems of MARL agents to quickly solve environments with sparse rewards. LIGS can seamlessly adopt existing MARL algorithms and, our theory shows that it ensures convergence to policies that deliver higher system performance. We demonstrate its superior performance in challenging tasks in Foraging and StarCraft II. © 2022 ICLR 2022 - 10th International Conference on Learning Representationss. All rights reserved.
会议录编者/会议主办者ByteDance ; et al. ; Meta AI ; Microsoft ; Qualcomm ; Sea Al Lab
关键词Fertilizers Learning systems Reinforcement Reinforcement learning Coordinated behavior Coordinated exploration Intrinsic rewards Joint behavior Learn+ Learner control Multi-agent learning Multi-agent reinforcement Performance Selection algorithm
会议名称10th International Conference on Learning Representations, ICLR 2022
会议地点Virtual, Online
会议日期April 25, 2022 - April 29, 2022
收录类别EI
语种英语
出版者International Conference on Learning Representations, ICLR
EI入藏号暂无
EI主题词Multi agent systems
EI分类号723.4 Artificial Intelligence - 804 Chemical Products Generally - 821.2 Agricultural Chemicals - 951 Materials Science
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183471
专题信息科学与技术学院_硕士生
信息科学与技术学院_本科生
通讯作者Taher Jafferjee
作者单位
1.ShanghaiTech University
2.Huawei Technologies
3.Imperial College London
4.Institute for AI, Peking University & BIGAI
5.University College London
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
David Mguni,Taher Jafferjee,Jianhong Wang,et al. LIGS: LEARNABLE INTRINSIC-REWARD GENERATION SELECTION FOR MULTI-AGENT LEARNING[C]//ByteDance, et al., Meta AI, Microsoft, Qualcomm, Sea Al Lab:International Conference on Learning Representations, ICLR,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[David Mguni]的文章
[Taher Jafferjee]的文章
[Jianhong Wang]的文章
百度学术
百度学术中相似的文章
[David Mguni]的文章
[Taher Jafferjee]的文章
[Jianhong Wang]的文章
必应学术
必应学术中相似的文章
[David Mguni]的文章
[Taher Jafferjee]的文章
[Jianhong Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。