| |||||||
ShanghaiTech University Knowledge Management System
Learning Proximal Operator Methods for Massive Connectivity in IoT Networks | |
2021 | |
会议录名称 | 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
![]() |
ISSN | 2334-0983 |
发表状态 | 已发表 |
DOI | 10.1109/GLOBECOM46510.2021.9685447 |
摘要 | Grant-free random access has the potential to support massive connectivity in Internet of Things (IoT) networks, where joint activity detection and channel estimation (JADCE) is a key issue that needs to be tackled. The existing methods for JADCE usually suffer from one of the following limitations: high computational complexity, ineffective in inducing sparsity, and incapable of handling complex matrix estimation. To mitigate all the aforementioned limitations, we in this paper develop an effective unfolding neural network framework built upon the proximal operator method to tackle the JADCE problem in IoT networks, where the base station is equipped with multiple antennas. Specifically, the JADCE problem is formulated as a group-sparse-matrix estimation problem, which is regularized by non-convex minimax concave penalty (MCP). This problem can be iteratively solved by using the proximal operator method, based on which we develop a unfolding neural network structure by parameterizing the algorithmic iterations. By further exploiting the coupling structure among the training parameters as well as the analytical computation, we develop two additional unfolding structures to reduce the training complexity. We prove that the proposed algorithm achieves a linear convergence rate. Results show that our proposed three unfolding structures not only achieve a faster convergence rate but also obtain a higher estimation accuracy than the baseline methods. |
会议名称 | IEEE Global Communications Conference (GLOBECOM) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,Madrid,SPAIN |
会议日期 | DEC 07-11, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[U20A20159] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000790747202052 |
出版者 | IEEE |
EISSN | 2576-6813 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183437 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 |
通讯作者 | Zou, Yinan |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zou, Yinan,Zhou, Yong,Shi, Yuanming,et al. Learning Proximal Operator Methods for Massive Connectivity in IoT Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。