消息
×
loading..
Learning Proximal Operator Methods for Massive Connectivity in IoT Networks
2021
会议录名称2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
ISSN2334-0983
发表状态已发表
DOI10.1109/GLOBECOM46510.2021.9685447
摘要Grant-free random access has the potential to support massive connectivity in Internet of Things (IoT) networks, where joint activity detection and channel estimation (JADCE) is a key issue that needs to be tackled. The existing methods for JADCE usually suffer from one of the following limitations: high computational complexity, ineffective in inducing sparsity, and incapable of handling complex matrix estimation. To mitigate all the aforementioned limitations, we in this paper develop an effective unfolding neural network framework built upon the proximal operator method to tackle the JADCE problem in IoT networks, where the base station is equipped with multiple antennas. Specifically, the JADCE problem is formulated as a group-sparse-matrix estimation problem, which is regularized by non-convex minimax concave penalty (MCP). This problem can be iteratively solved by using the proximal operator method, based on which we develop a unfolding neural network structure by parameterizing the algorithmic iterations. By further exploiting the coupling structure among the training parameters as well as the analytical computation, we develop two additional unfolding structures to reduce the training complexity. We prove that the proposed algorithm achieves a linear convergence rate. Results show that our proposed three unfolding structures not only achieve a faster convergence rate but also obtain a higher estimation accuracy than the baseline methods.
会议名称IEEE Global Communications Conference (GLOBECOM)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,Madrid,SPAIN
会议日期DEC 07-11, 2021
URL查看原文
收录类别CPCI-S ; EI ; CPCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[U20A20159]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000790747202052
出版者IEEE
EISSN2576-6813
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183437
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
通讯作者Zou, Yinan
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zou, Yinan,Zhou, Yong,Shi, Yuanming,et al. Learning Proximal Operator Methods for Massive Connectivity in IoT Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zou, Yinan]的文章
[Zhou, Yong]的文章
[Shi, Yuanming]的文章
百度学术
百度学术中相似的文章
[Zou, Yinan]的文章
[Zhou, Yong]的文章
[Shi, Yuanming]的文章
必应学术
必应学术中相似的文章
[Zou, Yinan]的文章
[Zhou, Yong]的文章
[Shi, Yuanming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@GLOBECOM46510.2021.9685447.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。