Weakly Supervised Nuclei Segmentation Via Instance Learning
2022
会议录名称PROCEEDINGS - INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING
ISSN1945-7928
卷号2022-March
发表状态已发表
DOI10.1109/ISBI52829.2022.9761644
摘要

Weakly supervised nuclei segmentation is a critical problem for pathological image analysis and greatly benefits the community due to the significant reduction of labeling cost. Adopting point annotations, previous methods mostly rely on less expressive representations for nuclei instances and thus have difficulty in handling crowded nuclei. In this paper, we propose to decouple weakly supervised semantic and instance segmentation in order to enable more effective subtask learning and to promote instance-aware representation learning. To achieve this, we design a modular deep network with two branches: a semantic proposal network and an instance encoding network, which are trained in a two-stage manner with an instance-sensitive loss. Empirical results show that our approach achieves the state-of-the-art performance on two public benchmarks of pathological images from different types of organs. Our code is available at https://github.com/weizhenFrank/WeakNucleiSeg. © 2022 IEEE.

会议录编者/会议主办者IEEE Engineering in Medicine and Biology Society (EMBS) ; IEEE Signal Processing Society ; Institute of Electrical and Electronic Engineers (IEEE)
关键词Benchmarking Computer vision Semantic Segmentation Semantics % reductions Critical problems Discriminative loss Instance learning Labelings Modulars Nucleus segmentation Pathological image analysis Subtask Weakly supervised learning
会议名称19th IEEE International Symposium on Biomedical Imaging, ISBI 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Kolkata, India
会议日期March 28, 2022 - March 31, 2022
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目Shanghai Science and Technology Program[21010502700]
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000836243800242
出版者IEEE Computer Society
EI入藏号20221912089448
EISSN1945-8452
EI分类号723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183417
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_博士生
通讯作者He, Xuming
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Weizhen,He, Qian,He, Xuming. Weakly Supervised Nuclei Segmentation Via Instance Learning[C]//IEEE Engineering in Medicine and Biology Society (EMBS), IEEE Signal Processing Society, Institute of Electrical and Electronic Engineers (IEEE). 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Weizhen]的文章
[He, Qian]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[Liu, Weizhen]的文章
[He, Qian]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[Liu, Weizhen]的文章
[He, Qian]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ISBI52829.2022.9761644.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。