ShanghaiTech University Knowledge Management System
Weakly Supervised Nuclei Segmentation Via Instance Learning | |
2022 | |
会议录名称 | PROCEEDINGS - INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING |
ISSN | 1945-7928 |
卷号 | 2022-March |
发表状态 | 已发表 |
DOI | 10.1109/ISBI52829.2022.9761644 |
摘要 | Weakly supervised nuclei segmentation is a critical problem for pathological image analysis and greatly benefits the community due to the significant reduction of labeling cost. Adopting point annotations, previous methods mostly rely on less expressive representations for nuclei instances and thus have difficulty in handling crowded nuclei. In this paper, we propose to decouple weakly supervised semantic and instance segmentation in order to enable more effective subtask learning and to promote instance-aware representation learning. To achieve this, we design a modular deep network with two branches: a semantic proposal network and an instance encoding network, which are trained in a two-stage manner with an instance-sensitive loss. Empirical results show that our approach achieves the state-of-the-art performance on two public benchmarks of pathological images from different types of organs. Our code is available at https://github.com/weizhenFrank/WeakNucleiSeg. © 2022 IEEE. |
会议录编者/会议主办者 | IEEE Engineering in Medicine and Biology Society (EMBS) ; IEEE Signal Processing Society ; Institute of Electrical and Electronic Engineers (IEEE) |
关键词 | Benchmarking Computer vision Semantic Segmentation Semantics % reductions Critical problems Discriminative loss Instance learning Labelings Modulars Nucleus segmentation Pathological image analysis Subtask Weakly supervised learning |
会议名称 | 19th IEEE International Symposium on Biomedical Imaging, ISBI 2022 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Kolkata, India |
会议日期 | March 28, 2022 - March 31, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | Shanghai Science and Technology Program[21010502700] |
WOS研究方向 | Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000836243800242 |
出版者 | IEEE Computer Society |
EI入藏号 | 20221912089448 |
EISSN | 1945-8452 |
EI分类号 | 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183417 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_博士生 |
通讯作者 | He, Xuming |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Weizhen,He, Qian,He, Xuming. Weakly Supervised Nuclei Segmentation Via Instance Learning[C]//IEEE Engineering in Medicine and Biology Society (EMBS), IEEE Signal Processing Society, Institute of Electrical and Electronic Engineers (IEEE). 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2022. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。