Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl
2018-02-21
发表期刊PHYSICAL REVIEW B
ISSN2469-9950
卷号97期号:6
发表状态已发表
DOI10.1103/PhysRevB.97.060406
摘要We predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl, a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over 650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points, which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from antiferromagnets Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the noncollinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks spin-rotation symmetry, the Weyl nodes are stable without SOC. Moreover, because of the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to 75% of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the comprehensive study of magneticWeyl semimetals. It is the first example of a material withWeyl points, large anomalous Hall effect, and angle despite a vanishing net magnetic moment.
收录类别SCI ; SCIE ; EI
语种英语
资助项目DOE[DE-SC0017865]
WOS研究方向Materials Science ; Physics
WOS类目Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:000425602700001
出版者AMER PHYSICAL SOC
EI入藏号20191906874280
EI主题词Aluminum alloys ; Carrier concentration ; Cobalt compounds ; Electric currents ; Ferrimagnetism ; Magnetic moments ; Magnetic structure ; Manganese alloys ; Ternary alloys ; Titanium alloys ; Topology
EI分类号Aluminum Alloys:541.2 ; Titanium and Alloys:542.3 ; Manganese and Alloys:543.2 ; Electricity: Basic Concepts and Phenomena:701.1 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
WOS关键词FERMI ARCS ; SURFACE ; INTERFERENCE ; SPINTRONICS ; SIGNATURES ; DISCOVERY ; CANDIDATE ; STATE ; PHASE ; BULK
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/18281
专题物质科学与技术学院_PI研究组_李刚组
硬x射线自由电子激光装置项目
通讯作者Sun, Yan
作者单位
1.Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China
3.Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
4.Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany
5.IFW Dresden, POB 270116, D-01171 Dresden, Germany
第一作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Shi, Wujun,Muechler, Lukas,Manna, Kaustuv,et al. Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl[J]. PHYSICAL REVIEW B,2018,97(6).
APA Shi, Wujun.,Muechler, Lukas.,Manna, Kaustuv.,Zhang, Yang.,Koepernik, Klaus.,...&Sun, Yan.(2018).Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl.PHYSICAL REVIEW B,97(6).
MLA Shi, Wujun,et al."Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl".PHYSICAL REVIEW B 97.6(2018).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Wujun]的文章
[Muechler, Lukas]的文章
[Manna, Kaustuv]的文章
百度学术
百度学术中相似的文章
[Shi, Wujun]的文章
[Muechler, Lukas]的文章
[Manna, Kaustuv]的文章
必应学术
必应学术中相似的文章
[Shi, Wujun]的文章
[Muechler, Lukas]的文章
[Manna, Kaustuv]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1103@PhysRevB.97.060406.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。