Parallel Sinogram and Image Framework With Co-Training Strategy for Metal Artifact Reduction in Tooth Ct Images
2022
会议录名称PROCEEDINGS - INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING
ISSN1945-7928
卷号2022-March
发表状态已发表
DOI10.1109/ISBI52829.2022.9761653
摘要

Computed Tomography (CT) is widely used in oral treatment planning but metal artifacts caused by high-density materials such as metal implants heavily influence the effectivness of digital tooth models. In existing studies on metal artifact reduction (MAR), the mathematical relationship between the spatial and projection domains is generally sequentially considered, or metal traces/masks are required as priors. In this paper, we propose a parallel sinogram and image framework (PSIF), aiming to enable MAR in the spatial and projection domains to benefit each other. We formulate this task as an image enhancement problem in the spatial domain and a sinogram completion problem in the projection domain using two parallel networks, and propose a co-training strategy with forward-backward projection consistency loss to optimize the model. The experimental results on 10, 000 tooth slices demonstrate that our proposed method can effectively recover tooth outlines and suppress the stripe artifacts. © 2022 IEEE.

会议录编者/会议主办者IEEE Engineering in Medicine and Biology Society (EMBS) ; IEEE Signal Processing Society ; Institute of Electrical and Electronic Engineers (IEEE)
关键词Computerized tomography Medical imaging Metals Backward projection Co-training Computed tomography images Cotraining strategy Forward-backward projection consistency Metal artifact reduction Projection domain Sinograms Spatial domains Training strategy
会议名称19th IEEE International Symposium on Biomedical Imaging, ISBI 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Kolkata, India
会议日期March 28, 2022 - March 31, 2022
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62131015] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guang-dong Province, China[2021B0101420006] ; China Postdoctoral Science Foundation[
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000836243800250
出版者IEEE Computer Society
EI入藏号20221912089256
EI主题词Image enhancement
EISSN1945-8452
EI分类号461.1 Biomedical Engineering ; 723.5 Computer Applications ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/180960
专题生物医学工程学院_PI研究组_沈定刚组
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_崔智铭组
通讯作者Song, Yang
作者单位
1.Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
3.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
4.Chongqing Univ Posts & Telecommun, Chongqing, Peoples R China
5.Affiliated Hangzhou First People Hosp, Dept Radiol, Hangzhou, Peoples R China
6.Shanghai Ninth Peoples Hosp, Shanghai, Peoples R China
第一作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Hu, Yan,Pan, Yongsheng,Song, Yang,et al. Parallel Sinogram and Image Framework With Co-Training Strategy for Metal Artifact Reduction in Tooth Ct Images[C]//IEEE Engineering in Medicine and Biology Society (EMBS), IEEE Signal Processing Society, Institute of Electrical and Electronic Engineers (IEEE). 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hu, Yan]的文章
[Pan, Yongsheng]的文章
[Song, Yang]的文章
百度学术
百度学术中相似的文章
[Hu, Yan]的文章
[Pan, Yongsheng]的文章
[Song, Yang]的文章
必应学术
必应学术中相似的文章
[Hu, Yan]的文章
[Pan, Yongsheng]的文章
[Song, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。