Virtual adversarial training for semi-supervised breast mass classification
2022
会议录名称PROGRESS IN BIOMEDICAL OPTICS AND IMAGING - PROCEEDINGS OF SPIE
ISSN1605-7422
卷号11961
发表状态已发表
DOI10.1117/12.2611851
摘要

The study aims to develop a novel computer-aided diagnosis (CAD) scheme for mammographic breast mass classification using semi-supervised learning. Although supervised deep learning has achieved huge success across various medical image analysis tasks, its success relies on large amounts of high-quality annotations, which can be challenging to acquire in practice. To overcome this limitation, we propose employing a semi-supervised method, i.e., virtual adversarial training (VAT), to leverage and learn useful information underlying in unlabeled data for better classification of breast masses. Accordingly, our VAT-based models have two types of losses, namely supervised and virtual adversarial losses. The former loss acts as in supervised classification, while the latter loss aims at enhancing the model's robustness against virtual adversarial perturbation, thus improving model generalizability. To evaluate the performance of our VAT-based CAD scheme, we retrospectively assembled a total of 1024 breast mass images, with equal number of benign and malignant masses. A large CNN and a small CNN were used in this investigation, and both were trained with and without the adversarial loss. When the labeled ratios were 40% and 80%, VAT-based CNNs delivered the highest classification accuracy of 0.740±0.015 and 0.760±0.015, respectively. The experimental results suggest that the VAT-based CAD scheme can effectively utilize meaningful knowledge from unlabeled data to better classify mammographic breast mass images. © COPYRIGHT SPIE.

会议录编者/会议主办者The Society of Photo-Optical Instrumentation Engineers (SPIE)
关键词Classification (of information) Computer aided instruction Deep learning E-learning Mammography Quality control Supervised learning Breast mass Breast mass classification Digital mammograms Large amounts Mammographic Mass classifications Medical image analysis Semi-supervised Unlabeled data Virtual adversarial training
会议名称Biophotonics and Immune Responses XVII 2022
出版地1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
会议地点Virtual, Online
会议日期February 20, 2022 - February 24, 2022
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目Oklahoma Shared Clinical & Translational Resources (OSCTR) pilot award from the University of Oklahoma Health Sciences (OUHSC)[NIGMS U54GM104938] ; Stephenson Cancer Center - National Cancer Institute Cancer Center Support Grant[P30CA225520]
WOS研究方向Immunology ; Optics ; Imaging Science & Photographic Technology
WOS类目Immunology ; Optics ; Imaging Science & Photographic Technology
WOS记录号WOS:000812209400005
出版者SPIE
EI入藏号20221812060198
EI主题词Computer aided diagnosis
EISSN1996-756X
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 461.7 Health Care ; 716.1 Information Theory and Signal Processing ; 723.5 Computer Applications ; 746 Imaging Techniques ; 901.2 Education ; 903.1 Information Sources and Analysis ; 913.3 Quality Assurance and Control
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/180959
专题信息科学与技术学院_硕士生
通讯作者Qiu, Yuchen
作者单位
1.Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Oklahoma, Hlth Sci Ctr, Dept Pathol, Oklahoma City, OK 73104 USA
4.Univ Oklahoma, Hlth Sci Ctr, Dept Radiol, Oklahoma City, OK 73104 USA
5.Univ Oklahoma, Hlth Sci Ctr, Dept Obstet & Gynecol, Oklahoma City, OK 73104 USA
推荐引用方式
GB/T 7714
Chena, Xuxin,Wang, Ximin,Zhang, Ke,et al. Virtual adversarial training for semi-supervised breast mass classification[C]//The Society of Photo-Optical Instrumentation Engineers (SPIE). 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE,2022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chena, Xuxin]的文章
[Wang, Ximin]的文章
[Zhang, Ke]的文章
百度学术
百度学术中相似的文章
[Chena, Xuxin]的文章
[Wang, Ximin]的文章
[Zhang, Ke]的文章
必应学术
必应学术中相似的文章
[Chena, Xuxin]的文章
[Wang, Ximin]的文章
[Zhang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1117@12.2611851.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。