Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation
2022-04-25
发表期刊MATERIALS HORIZONS (IF:12.2[JCR-2023],12.5[5-Year])
ISSN2051-6347
EISSN2051-6355
发表状态已发表
DOI10.1039/d2mh00296e
摘要

Narrowing the mechanical and electrical mismatch between tissue and implantable microelectronics is essential for reducing immune responses and modulating physioelectrical signals. Nevertheless, the design of such implantable microelectronics remains a challenge due to the limited availability of suitable materials. Here, the fabrication of an electrically and mechanically biocompatible alginate hydrogel ionotronic fiber (AHIF) is reported, which is constructed by combing ionic chelation-assisted wet-spinning and mechanical training. The synergistic effects of these two processes allow the alginate to form a highly-oriented nanofibril and molecular network, with a hierarchical structure highly similar to that of natural fibers. These favourable structural features endow AHIF with tissue-mimicking mechanical characteristics, such as self-stiffening and soft tissue-like mechanical properties. In addition, tissue-like chemical components, i.e., biomacromolecules, Ca2+ ions, and water, endow AHIF with properties including biocompatibility and tissue-matching conductivity. These advantages bring light to the application of AHIFs in electrically-conductive implantable devices. As a prototype, an AHIF is designed to perform physioelectrical modulation through noncontact electromagnetic induction. Through experimental and machine learning optimizations, physioelectrical-like signals generated by the AHIF are used to identify the geometry and tension state of the implanted device in the body. Such an intelligent AHIF system has promising application prospects in bioelectronics, IntelliSense, and human-machine interactions.

URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目National Natural Science Foundation of China[51973116,21935002,52003156] ; China Postdoctoral Science Foundation[2020M681344]
WOS研究方向Chemistry ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Materials Science, Multidisciplinary
WOS记录号WOS:000789923400001
出版者ROYAL SOC CHEMISTRY
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/180892
专题物质科学与技术学院_硕士生
物质科学与技术学院_PI研究组_凌盛杰组
物质科学与技术学院_博士生
通讯作者Ling, Shengjie
作者单位
1.ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
2.Fudan Univ, Zhongshan Hosp, Dept Orthoped Surg, 180 Fenglin Rd, Shanghai 200032, Peoples R China
3.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
4.Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Lab Adv Mat, Shanghai 200433, Peoples R China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Chen, Zhihao,Zhang, Taiwei,Chen, Chun-Teh,et al. Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation[J]. MATERIALS HORIZONS,2022.
APA Chen, Zhihao.,Zhang, Taiwei.,Chen, Chun-Teh.,Yang, Shuo.,Lv, Zhuochen.,...&Ling, Shengjie.(2022).Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation.MATERIALS HORIZONS.
MLA Chen, Zhihao,et al."Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation".MATERIALS HORIZONS (2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Zhihao]的文章
[Zhang, Taiwei]的文章
[Chen, Chun-Teh]的文章
百度学术
百度学术中相似的文章
[Chen, Zhihao]的文章
[Zhang, Taiwei]的文章
[Chen, Chun-Teh]的文章
必应学术
必应学术中相似的文章
[Chen, Zhihao]的文章
[Zhang, Taiwei]的文章
[Chen, Chun-Teh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。