ShanghaiTech University Knowledge Management System
Deep Reinforcement Learning for Resource Allocation in Massive MIMO | |
2021 | |
会议录名称 | 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021)
![]() |
ISSN | 2076-1465 |
页码 | 1611-1615 |
发表状态 | 已发表 |
DOI | 10.23919/EUSIPCO54536.2021.9616054 |
摘要 | As the extensive application of massive multiple-input multiple-output (MIMO) in 5G and beyond 5G (B5G) networks, multi-user (MU) MIMO scheduling faces big challenges on performance enhancement with effective interference coordination and computational complexity reduction. Plenty of deep learning and reinforcement learning for wireless resource scheduling are proposed to solve the above issues via a well trained network, instead of executing iteration search on each scheduling period. However, the dimension of the channel state information and the size of user combination set may increase exponentially in massive MIMO system, which makes the neural network over complicated and causes severe convergent issues. In this paper, a novel Actor-Critic framework is developed to overcome the above existing issues for the single-cell downlink multi-user scheduling issue in massive MIMO system. Pointer network is investigated as the policy network in our proposed algorithm, which transfers the complicated selection issue among user combinations to a user sequential selection issue based on conditional probability. Simulation results show that the performance of our method is very close to that of the greedy algorithm with much less computational complexity. Moreover, our proposal is robust and effective with the increase of the number of antennas and users. |
关键词 | Massive MIMO single-cell downlink MU-MIMO scheduling pointer network advantage Actor Critic |
会议名称 | 29th European Signal Processing Conference (EUSIPCO) |
出版地 | PO BOX 74251, KESSARIANI, 151 10, GREECE |
会议地点 | ELECTR NETWORK |
会议日期 | AUG 23-27, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Acoustics ; Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Telecommunications |
WOS类目 | Acoustics ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Telecommunications |
WOS记录号 | WOS:000764066600321 |
出版者 | EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP |
EI入藏号 | 20220411505829 |
EI主题词 | MIMO systems |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/176074 |
专题 | 创意与艺术学院_特聘教授组_汪军组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Chen, Liang |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.UCL, London, England |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chen, Liang,Sun, Fanglei,Li, Kai,et al. Deep Reinforcement Learning for Resource Allocation in Massive MIMO[C]. PO BOX 74251, KESSARIANI, 151 10, GREECE:EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP,2021:1611-1615. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。