Deep Reinforcement Learning for Resource Allocation in Massive MIMO
2021
会议录名称29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021)
ISSN2076-1465
页码1611-1615
发表状态已发表
DOI10.23919/EUSIPCO54536.2021.9616054
摘要

As the extensive application of massive multiple-input multiple-output (MIMO) in 5G and beyond 5G (B5G) networks, multi-user (MU) MIMO scheduling faces big challenges on performance enhancement with effective interference coordination and computational complexity reduction. Plenty of deep learning and reinforcement learning for wireless resource scheduling are proposed to solve the above issues via a well trained network, instead of executing iteration search on each scheduling period. However, the dimension of the channel state information and the size of user combination set may increase exponentially in massive MIMO system, which makes the neural network over complicated and causes severe convergent issues. In this paper, a novel Actor-Critic framework is developed to overcome the above existing issues for the single-cell downlink multi-user scheduling issue in massive MIMO system. Pointer network is investigated as the policy network in our proposed algorithm, which transfers the complicated selection issue among user combinations to a user sequential selection issue based on conditional probability. Simulation results show that the performance of our method is very close to that of the greedy algorithm with much less computational complexity. Moreover, our proposal is robust and effective with the increase of the number of antennas and users.

关键词Massive MIMO single-cell downlink MU-MIMO scheduling pointer network advantage Actor Critic
会议名称29th European Signal Processing Conference (EUSIPCO)
出版地PO BOX 74251, KESSARIANI, 151 10, GREECE
会议地点ELECTR NETWORK
会议日期AUG 23-27, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
WOS研究方向Acoustics ; Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Telecommunications
WOS类目Acoustics ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Telecommunications
WOS记录号WOS:000764066600321
出版者EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP
EI入藏号20220411505829
EI主题词MIMO systems
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/176074
专题创意与艺术学院_特聘教授组_汪军组
信息科学与技术学院_PI研究组_杨旸组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Chen, Liang
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.UCL, London, England
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Liang,Sun, Fanglei,Li, Kai,et al. Deep Reinforcement Learning for Resource Allocation in Massive MIMO[C]. PO BOX 74251, KESSARIANI, 151 10, GREECE:EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP,2021:1611-1615.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Liang]的文章
[Sun, Fanglei]的文章
[Li, Kai]的文章
百度学术
百度学术中相似的文章
[Chen, Liang]的文章
[Sun, Fanglei]的文章
[Li, Kai]的文章
必应学术
必应学术中相似的文章
[Chen, Liang]的文章
[Sun, Fanglei]的文章
[Li, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。