Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics
2022-03-24
发表期刊FRONTIERS IN MEDICINE (IF:3.1[JCR-2023],3.4[5-Year])
EISSN2296-858X
卷号9
发表状态已发表
DOI10.3389/fmed.2022.771982
摘要Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
关键词deep learning magnetic resonance imaging multimodal imaging neuroimaging positron emission tomography optoacoustic imaging image registration fluorescence imaging
URL查看原文
收录类别SCI ; SCIE
语种英语
资助项目University of Zurich[MEDEF-20-021]
WOS研究方向General & Internal Medicine
WOS类目Medicine, General & Internal
WOS记录号WOS:000782109800001
出版者FRONTIERS MEDIA SA
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/176058
专题信息科学与技术学院_PI研究组_任无畏组
通讯作者Ren, Wuwei; Ni, Ruiqing
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China
3.Fudan Univ, Sch Pharm, Dept Radiopharm & Mol maging, Shanghai, Peoples R China
4.Fudan Univ, Huashan Hosp, PET Ctr, Shanghai, Peoples R China
5.Shanghai Changes Tech Ltd, Shanghai, Peoples R China
6.Univ Zurich, Inst Regenerat Med, Zurich, Switzerland
7.Swiss Fed Inst Technol, Inst Biomed Engn, Zurich, Switzerland
8.Univ Zurich, Zurich, Switzerland
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ren, Wuwei,Ji, Bin,Guan, Yihui,et al. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics[J]. FRONTIERS IN MEDICINE,2022,9.
APA Ren, Wuwei,Ji, Bin,Guan, Yihui,Cao, Lei,&Ni, Ruiqing.(2022).Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics.FRONTIERS IN MEDICINE,9.
MLA Ren, Wuwei,et al."Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics".FRONTIERS IN MEDICINE 9(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ren, Wuwei]的文章
[Ji, Bin]的文章
[Guan, Yihui]的文章
百度学术
百度学术中相似的文章
[Ren, Wuwei]的文章
[Ji, Bin]的文章
[Guan, Yihui]的文章
必应学术
必应学术中相似的文章
[Ren, Wuwei]的文章
[Ji, Bin]的文章
[Guan, Yihui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3389@fmed.2022.771982.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。