ShanghaiTech University Knowledge Management System
Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding | |
2022 | |
发表期刊 | JOURNAL OF MATERIALS CHEMISTRY C (IF:5.7[JCR-2023],6.0[5-Year]) |
ISSN | 2050-7526 |
EISSN | 2050-7534 |
卷号 | 10期号:18页码:7241-7250 |
发表状态 | 已发表 |
DOI | 10.1039/d2tc00775d |
摘要 | Artificial perception learning systems and artificial neural networks based on neuromorphic devices would promote the progress of neuromorphic engineering to a great extent. Here, we propose a vision enhancement and information decoding platform using aqueous solution-processed mesoporous silica coating gated oxide ionotronic neuromorphic transistors. These transistors exhibit excellent electrical performances with the ability to synergistically respond to both optical and electrical stimuli. Interestingly, an effective linear synaptic weight updating strategy is proposed. Thus, an artificial neural network is built and evaluated through simulations. With the optimized current spiking synaptic weight updating, an excellent recognition accuracy of similar to 94.73% is demonstrated after 125 learning epochs in recognizing the MNIST handwritten digits. The accuracy is comparable to the ideal accuracy of similar to 94.72%. Finally, the information decoding function is conceptually demonstrated with the photoelectric synergic responses. The proposed photoelectric neuromorphic transistors have great potential application in the fields of artificial visual platforms and bionic perception learning systems. |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51972316] ; Ningbo Key Scientific and Technological Project[2021Z116] ; Zhejiang Provincial Natural Science Foundation of China[LR18F040002] |
WOS研究方向 | Materials Science ; Physics |
WOS类目 | Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000784143900001 |
出版者 | ROYAL SOC CHEMISTRY |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/176046 |
专题 | 个人在本单位外知识产出 物质科学与技术学院 |
通讯作者 | Zhu, Li Qiang |
作者单位 | 1.Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China 2.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China 3.Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Ren, Zheng Yu,Kong, Yun Hui,Ai, Ling,et al. Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding[J]. JOURNAL OF MATERIALS CHEMISTRY C,2022,10(18):7241-7250. |
APA | Ren, Zheng Yu.,Kong, Yun Hui.,Ai, Ling.,Xiao, Hui.,Wang, Wei Sheng.,...&Zhu, Li Qiang.(2022).Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding.JOURNAL OF MATERIALS CHEMISTRY C,10(18),7241-7250. |
MLA | Ren, Zheng Yu,et al."Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding".JOURNAL OF MATERIALS CHEMISTRY C 10.18(2022):7241-7250. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。