ShanghaiTech University Knowledge Management System
Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials | |
2022-03-16 | |
发表期刊 | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (IF:14.4[JCR-2023],14.8[5-Year]) |
ISSN | 0002-7863 |
EISSN | 1520-5126 |
卷号 | 144期号:10 |
发表状态 | 已发表 |
DOI | 10.1021/jacs.1c11136 |
摘要 | Due to the extraordinarily high surface to volume ratio and enormous structural and chemical diversities, metal-organic frameworks (MOFs) have drawn much attention in applications such as heterogeneous catalysis, gas storage separation, and drug delivery, and so on. However, the potential of MOF materials as mechanical metamaterials has not been investigated. In this work, we demonstrated that through the concerted effort of molecular construct and mesoscopic structural design, hierarchical MOFs can exhibit superb mechanical properties. With the cutting-edge in situ transmission and scanning electron microscope (TEM and SEM) techniques, the mechanical properties of hollow UiO-66 octahedron particles were quantitatively studied by compression on individual specimens. Results showed that the yield strength and Young's modulus of the hierarchical porous framework material presented a distinct "smaller is stronger and stiffer"size dependency, and the maximum yield strength and Young's modulus reached 580 ± 55 MPa and 4.3 ± 0.5 GPa, respectively. The specific strengths were measured as 0.15 ± 0.03 to 0.68 ± 0.11 GPa g-1 cm3, which is comparable to the previously reported state-of-the-art mechanical metamaterials like glassy carbon nanolattices and pyrolytic carbon nanolattices. This work revealed that MOF materials can be made into a new class of low-density, high-strength mechanical metamaterials and provided insight into the mechanical stability of nanoscale MOFs for practical applications. © 2022 American Chemical Society. |
关键词 | Carbon Catalysis Drug delivery Elastic moduli Mechanical stability Metal-Organic Frameworks Metamaterials Organometallics Scanning electron microscopy High surface-to-volume ratio High-strength Mechanical Metal organic framework materials Metalorganic frameworks (MOFs) Nanolattices Strength modulus Structural diversity Ultra-light Young modulus |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[11902200,22075181,11872100,52075020] ; Shanghai Sailing Program[19YF1433600] ; Analytical Instrumentation Center, SPST, ShanghaiTech University[SPSTAIC10112914] ; Defense Industrial Technology Development Program[ |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Multidisciplinary |
WOS记录号 | WOS:000776234200014 |
出版者 | American Chemical Society |
EI入藏号 | 20221111782527 |
EI主题词 | Yield stress |
EI分类号 | 531.1 Metallurgy ; 802.2 Chemical Reactions ; 804 Chemical Products Generally ; 804.1 Organic Compounds ; 951 Materials Science |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/169321 |
专题 | 物质科学与技术学院_硕士生 物质科学与技术学院_PI研究组_李涛组 物质科学与技术学院_PI研究组_张洪题组 |
通讯作者 | Hu, Dayong; Li, Tao; Zhang, Hongti |
作者单位 | 1.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China; 2.Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing; 100191, China; 3.Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai; 201210, China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院; 上海科技大学 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Xing, Yurui,Luo, Lianshun,Li, Yansong,et al. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2022,144(10). |
APA | Xing, Yurui.,Luo, Lianshun.,Li, Yansong.,Wang, Dongxu.,Hu, Dayong.,...&Zhang, Hongti.(2022).Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials.JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,144(10). |
MLA | Xing, Yurui,et al."Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials".JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 144.10(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。