Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection
2022-08-01
发表期刊IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION (IF:4.6[JCR-2023],5.0[5-Year])
ISSN0018-926X
EISSN1558-2221
卷号70期号:8
发表状态已发表
DOI10.1109/TAP.2022.3159680
摘要

As a rapidly developing novel electromagnetic imaging technique, microwave-induced thermoacoustic tomography (MITAT) has found many applications and attracted tremendous research interest. Using sparse data to reconstruct images is very challenging for MITAT. This work proposes a novel deep-learning-enabled MITAT (DL-MITAT) modality to address the sparse data reconstruction problem and applies it in breast cancer detection. The applied network is a domain transform network called FPNet+ResU-Net. Detailed structure and implementation method of the network is described. We conduct both simulation and ex-vivo experiments with breast phantoms to test the validity of the DL-MITAT approach. The obtained images given by the trained network exhibit much better quality and have much less artifacts than those obtained by a traditional imaging algorithm. We show that only 15 measurements can still reliably recover an image of the breast tumor for both full-view and limited-view configurations in ex-vivo experiments. We also provide detailed discussions on the capability and limitations of the proposed scheme. This work presents a new paradigm for MITAT based on sparse data and can be applied in all related applications of MITAT, including biomedical imaging, nondestructive testing, and therapy guidance. IEEE

关键词Deep learning Diseases Imaging systems Medical imaging Nondestructive examination Photoacoustic effect Thermoacoustics Tomography Biomedical measurements Breast cancer detection Deep learning Electromagnetic imaging FPNet Images reconstruction Microwave imaging Microwave-induced Sparse data Thermoacoustic tomography
URL查看原文
收录类别EI ; SCI
语种英语
资助项目National Natural Science Foundation of China[61971287]
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000967533500001
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20221311863863
EI主题词Image reconstruction
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 641.1 Thermodynamics ; 741.1 Light/Optics ; 746 Imaging Techniques ; 751 Acoustics, Noise. Sound ; 751.1 Acoustic Waves
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/169310
专题信息科学与技术学院
信息科学与技术学院_PI研究组_王雄组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
作者单位
School of Information Science and Technology and the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiale Zhang,Chenzhe Li,Weichao Jiang,et al. Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2022,70(8).
APA Jiale Zhang,Chenzhe Li,Weichao Jiang,Zhicheng Wang,Lejia Zhang,&Xiong Wang.(2022).Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,70(8).
MLA Jiale Zhang,et al."Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection".IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 70.8(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiale Zhang]的文章
[Chenzhe Li]的文章
[Weichao Jiang]的文章
百度学术
百度学术中相似的文章
[Jiale Zhang]的文章
[Chenzhe Li]的文章
[Weichao Jiang]的文章
必应学术
必应学术中相似的文章
[Jiale Zhang]的文章
[Chenzhe Li]的文章
[Weichao Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。