ShanghaiTech University Knowledge Management System
Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection | |
2022-08-01 | |
发表期刊 | IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION (IF:4.6[JCR-2023],5.0[5-Year]) |
ISSN | 0018-926X |
EISSN | 1558-2221 |
卷号 | 70期号:8 |
发表状态 | 已发表 |
DOI | 10.1109/TAP.2022.3159680 |
摘要 | As a rapidly developing novel electromagnetic imaging technique, microwave-induced thermoacoustic tomography (MITAT) has found many applications and attracted tremendous research interest. Using sparse data to reconstruct images is very challenging for MITAT. This work proposes a novel deep-learning-enabled MITAT (DL-MITAT) modality to address the sparse data reconstruction problem and applies it in breast cancer detection. The applied network is a domain transform network called FPNet+ResU-Net. Detailed structure and implementation method of the network is described. We conduct both simulation and ex-vivo experiments with breast phantoms to test the validity of the DL-MITAT approach. The obtained images given by the trained network exhibit much better quality and have much less artifacts than those obtained by a traditional imaging algorithm. We show that only 15 measurements can still reliably recover an image of the breast tumor for both full-view and limited-view configurations in ex-vivo experiments. We also provide detailed discussions on the capability and limitations of the proposed scheme. This work presents a new paradigm for MITAT based on sparse data and can be applied in all related applications of MITAT, including biomedical imaging, nondestructive testing, and therapy guidance. IEEE |
关键词 | Deep learning Diseases Imaging systems Medical imaging Nondestructive examination Photoacoustic effect Thermoacoustics Tomography Biomedical measurements Breast cancer detection Deep learning Electromagnetic imaging FPNet Images reconstruction Microwave imaging Microwave-induced Sparse data Thermoacoustic tomography |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61971287] |
WOS研究方向 | Engineering ; Telecommunications |
WOS类目 | Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000967533500001 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20221311863863 |
EI主题词 | Image reconstruction |
EI分类号 | 461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 641.1 Thermodynamics ; 741.1 Light/Optics ; 746 Imaging Techniques ; 751 Acoustics, Noise. Sound ; 751.1 Acoustic Waves |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/169310 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_王雄组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 |
作者单位 | School of Information Science and Technology and the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiale Zhang,Chenzhe Li,Weichao Jiang,et al. Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2022,70(8). |
APA | Jiale Zhang,Chenzhe Li,Weichao Jiang,Zhicheng Wang,Lejia Zhang,&Xiong Wang.(2022).Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,70(8). |
MLA | Jiale Zhang,et al."Deep-learning-enabled Microwave-induced Thermoacoustic Tomography based on Sparse Data for Breast Cancer Detection".IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 70.8(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。