Learning Discriminative Latent Attributes for Zero-Shot Classification
2017
会议录名称2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
ISSN2380-7504
卷号2017-October
页码4233-4242
发表状态已发表
DOI10.1109/ICCV.2017.453
摘要Zero-shot learning (ZSL) aims to transfer knowledge from observed classes to the unseen classes, based on the assumption that both the seen and unseen classes share a common semantic space, among which attributes enjoy a great popularity. However, few works study whether the human-designed semantic attributes are discriminative enough to recognize different classes. Moreover, attributes are often correlated with each other, which makes it less desirable to learn each attribute independently. In this paper, we propose to learn a latent attribute space, which is not only discriminative but also semantic-preserving, to perform the ZSL task. Specifically, a dictionary learning framework is exploited to connect the latent attribute space with attribute space and similarity space. Extensive experiments on four benchmark datasets show the effectiveness of the proposed approach.
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Venice, Italy
会议日期22-29 Oct. 2017
URL查看原文
收录类别CPCI ; EI
语种英语
资助项目Youth Innovation Promotion Association CAS[2015085]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000425498404032
出版者IEEE
EI入藏号20180704804206
EI主题词Semantics
EI分类号Computer Applications:723.5
WOS关键词OBJECT CLASSES
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/16304
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_陈熙霖组
信息科学与技术学院_博士生
通讯作者Jiang, Huajie
作者单位
1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
3.ShanghaiTech Univ, Shanghai 200031, Peoples R China
4.Huawei Technol Co Ltd, Beijing 100085, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Jiang, Huajie,Wang, Ruiping,Shan, Shiguang,et al. Learning Discriminative Latent Attributes for Zero-Shot Classification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:4233-4242.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 16304.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。