Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy
2018-05
发表期刊BIOMATERIALS (IF:12.8[JCR-2023],13.1[5-Year])
ISSN0142-9612
卷号163页码:1-13
发表状态已发表
DOI10.1016/j.biomaterials.2018.02.018
摘要Inorganic mesoporous silica-based nanovehicles are highly promising for drug delivery but still suffer from the disadvantages of lacking functionality and poor biodegradability on account of the inert silica framework. Moreover, conventional cancer therapeutics typically employ toxic anticancer drugs or invasive external irradiations, which will inevitably give rise to severe adverse effects and diminished therapeutic outcome. In this work, we report on the iron engineered framework of mesoporous silica nanoparticles (MSNs) to fabricate a nanocatalyst with biodegradable and catalytic framework via a "dissolution-regeneration" strategy (designated as rFeO(x)-HMSN). Based on the abundant overexpressed hydrogen peroxide (H2O2) and mild acidic nature in tumor microenvironment (TME), rFeO(x)-HMSN nanocatalyst could trigger in-situ Fenton-like reactions to produce highly toxic hydroxyl radicals (center dot OH), causing remarkable oxidative damages against tumor cells/xenografts. Additionally, the iron-engineered rFeO(x)-HMSN nanocatalyst could readily collapse via an iron-extraction strategy under protein-rich environment, thereby improving the biodegradability of rFeO(x)-HMSN nanocatalyst. This work paves a promising way to engineer the inert framework of MSN into functional, biodegradable and catalytic nanoplatform, featuring effective tumor-therapeutic outcome and stimuli-responsive biodegradation concurrently. (C) 2018 Elsevier Ltd. All rights reserved.
关键词Framework engineering Catalytic nanomedicine Fenton-like reaction Tumor microenvironment Coordination degradation
收录类别SCI ; SCIE ; EI
语种英语
资助项目Youth Innovation Promotion Association, China[2013169]
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Biomedical ; Materials Science, Biomaterials
WOS记录号WOS:000428606700001
出版者ELSEVIER SCI LTD
EI入藏号20180704802427
EI主题词Biodegradability ; Biodegradation ; Coordination reactions ; Iron ; Medical nanotechnology ; Mesoporous materials ; Oxidation ; Silica ; Tumors
EI分类号Biological Materials and Tissue Engineering:461.2 ; Iron:545.1 ; Nanotechnology:761 ; Biochemistry:801.2 ; Chemical Reactions:802.2
WOS关键词DRUG-DELIVERY SYSTEM ; HYDROGEN-PEROXIDE ; BIOMEDICAL APPLICATIONS ; OXIDE NANOPARTICLES ; FENTON REACTION ; CANCER-THERAPY ; PH ; RELEASE ; AGENTS ; THERANOSTICS
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/16196
专题物质科学与技术学院
物质科学与技术学院_特聘教授组_施剑林组
物质科学与技术学院_博士生
通讯作者Chen, Yu; Shi, Jianlin
作者单位
1.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Wang, Liying,Huo, Minfeng,Chen, Yu,et al. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy[J]. BIOMATERIALS,2018,163:1-13.
APA Wang, Liying,Huo, Minfeng,Chen, Yu,&Shi, Jianlin.(2018).Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy.BIOMATERIALS,163,1-13.
MLA Wang, Liying,et al."Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy".BIOMATERIALS 163(2018):1-13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Liying]的文章
[Huo, Minfeng]的文章
[Chen, Yu]的文章
百度学术
百度学术中相似的文章
[Wang, Liying]的文章
[Huo, Minfeng]的文章
[Chen, Yu]的文章
必应学术
必应学术中相似的文章
[Wang, Liying]的文章
[Huo, Minfeng]的文章
[Chen, Yu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 16196.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。