| |||||||
ShanghaiTech University Knowledge Management System
AS-Net: Fast Photoacoustic Reconstruction With Multi-Feature Fusion From Sparse Data | |
2022 | |
发表期刊 | IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING (IF:4.2[JCR-2023],4.7[5-Year]) |
ISSN | 2573-0436 |
卷号 | 8 |
发表状态 | 已发表 |
DOI | 10.1109/TCI.2022.3155379 |
摘要 | Photoacoustic (PA) imaging is a biomedical imaging modality capable of acquiring high-contrast images of optical absorption at depths much greater than traditional optical imaging techniques. However, practical instrumentation and geometry limit the number of available acoustic sensors surrounding the imaging target, which results in the sparsity of sensor data. Conventional PA image reconstruction methods give severe artifacts when they are applied directly to the sparse PA data. In this paper, we firstly propose to employ a novel signal processing method to make sparse PA raw data more suitable for the neural network, concurrently speeding up image reconstruction. Then we propose Attention Steered Network (AS-Net) for PA reconstruction with multi-feature fusion. AS-Net is validated on different datasets, including simulated photoacoustic data from fundus vasculature phantoms and experimental data from in vivo fish and mice. Notably, the method is also able to eliminate some artifacts present in the ground truth for in vivo data. Results demonstrated that our method provides superior reconstructions at a faster speed. |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/161470 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China 3.University of Chinese Academy of Sciences, Beijing, China 4.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 5.Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Shanghai, China 6.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Mengjie Guo,Hengrong Lan,Changchun Yang,et al. AS-Net: Fast Photoacoustic Reconstruction With Multi-Feature Fusion From Sparse Data[J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,2022,8. |
APA | Mengjie Guo,Hengrong Lan,Changchun Yang,Jiang Liu,&Fei Gao.(2022).AS-Net: Fast Photoacoustic Reconstruction With Multi-Feature Fusion From Sparse Data.IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,8. |
MLA | Mengjie Guo,et al."AS-Net: Fast Photoacoustic Reconstruction With Multi-Feature Fusion From Sparse Data".IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 8(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。