ShanghaiTech University Knowledge Management System
Acquiring structural and mechanical information of a fibrous network through deep learning | |
2022-03-16 | |
发表期刊 | NANOSCALE (IF:5.8[JCR-2023],6.1[5-Year]) |
ISSN | 2040-3364 |
EISSN | 2040-3372 |
卷号 | 14期号:13页码:5044-5053 |
发表状态 | 已发表 |
DOI | 10.1039/D2NR00372D |
摘要 | Fibrous networks play an essential role in the structure and properties of a variety of biological and engineered materials, such as cytoskeletons, protein filament-based hydrogels, and entangled or crosslinked polymer chains. Therefore, insight into the structural features of these fibrous networks and their constituent filaments is critical for discovering the structure-property-function relationships of these material systems. In this paper, a fibrous network-deep learning system (FN-DLS) is established to extract fibrous network structure information from atomic force microscopy images. FN-DLS accurately assesses the structural and mechanical characteristics of fibrous networks, such as contour length, number of nodes, persistence length, mesh size and fractal dimension. As an open-source system, FN-DLS is expected to serve a vast community of scientists working on very diverse disciplines and pave the way for new approaches on the study of biological and synthetic polymer and filament networks found in current applied and fundamental sciences. |
关键词 | Deep learning MESH networking Open systems Cross-linked polymer chains Cytoskeletons Engineered materials Entangled polymers Fibrous networks Mechanical Protein filaments Structural feature Structure property Structures and properties |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[21935002,51973116] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000769563100001 |
出版者 | ROYAL SOC CHEMISTRY |
EI入藏号 | 20221511955511 |
EI主题词 | Fractal dimension |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 722 Computer Systems and Equipment ; 921 Mathematics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/161437 |
专题 | 物质科学与技术学院_硕士生 物质科学与技术学院_PI研究组_凌盛杰组 物质科学与技术学院_PI研究组_刘一凡组 |
通讯作者 | Ling, Shengjie |
作者单位 | 1.ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 2.Anhui Agr Univ, Biomass Mol Engn Ctr, Sch Forestry & Landscape Architecture, Hefei 230036, Anhui, Peoples R China 3.Anhui Agr Univ, Dept Mat Sci & Engn, Sch Forestry & Landscape Architecture, Hefei 230036, Anhui, Peoples R China 4.Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Lab Adv Mat, Shanghai 200433, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Yang, Shuo,Zhao, Chenxi,Ren, Jing,et al. Acquiring structural and mechanical information of a fibrous network through deep learning[J]. NANOSCALE,2022,14(13):5044-5053. |
APA | Yang, Shuo,Zhao, Chenxi,Ren, Jing,Zheng, Ke,Shao, Zhengzhong,&Ling, Shengjie.(2022).Acquiring structural and mechanical information of a fibrous network through deep learning.NANOSCALE,14(13),5044-5053. |
MLA | Yang, Shuo,et al."Acquiring structural and mechanical information of a fibrous network through deep learning".NANOSCALE 14.13(2022):5044-5053. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。