Acquiring structural and mechanical information of a fibrous network through deep learning
2022-03-16
发表期刊NANOSCALE (IF:5.8[JCR-2023],6.1[5-Year])
ISSN2040-3364
EISSN2040-3372
卷号14期号:13页码:5044-5053
发表状态已发表
DOI10.1039/D2NR00372D
摘要

Fibrous networks play an essential role in the structure and properties of a variety of biological and engineered materials, such as cytoskeletons, protein filament-based hydrogels, and entangled or crosslinked polymer chains. Therefore, insight into the structural features of these fibrous networks and their constituent filaments is critical for discovering the structure-property-function relationships of these material systems. In this paper, a fibrous network-deep learning system (FN-DLS) is established to extract fibrous network structure information from atomic force microscopy images. FN-DLS accurately assesses the structural and mechanical characteristics of fibrous networks, such as contour length, number of nodes, persistence length, mesh size and fractal dimension. As an open-source system, FN-DLS is expected to serve a vast community of scientists working on very diverse disciplines and pave the way for new approaches on the study of biological and synthetic polymer and filament networks found in current applied and fundamental sciences.

关键词Deep learning MESH networking Open systems Cross-linked polymer chains Cytoskeletons Engineered materials Entangled polymers Fibrous networks Mechanical Protein filaments Structural feature Structure property Structures and properties
URL查看原文
收录类别SCI ; EI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[21935002,51973116]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000769563100001
出版者ROYAL SOC CHEMISTRY
EI入藏号20221511955511
EI主题词Fractal dimension
EI分类号461.4 Ergonomics and Human Factors Engineering ; 722 Computer Systems and Equipment ; 921 Mathematics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/161437
专题物质科学与技术学院_硕士生
物质科学与技术学院_PI研究组_凌盛杰组
物质科学与技术学院_PI研究组_刘一凡组
通讯作者Ling, Shengjie
作者单位
1.ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
2.Anhui Agr Univ, Biomass Mol Engn Ctr, Sch Forestry & Landscape Architecture, Hefei 230036, Anhui, Peoples R China
3.Anhui Agr Univ, Dept Mat Sci & Engn, Sch Forestry & Landscape Architecture, Hefei 230036, Anhui, Peoples R China
4.Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Lab Adv Mat, Shanghai 200433, Peoples R China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Yang, Shuo,Zhao, Chenxi,Ren, Jing,et al. Acquiring structural and mechanical information of a fibrous network through deep learning[J]. NANOSCALE,2022,14(13):5044-5053.
APA Yang, Shuo,Zhao, Chenxi,Ren, Jing,Zheng, Ke,Shao, Zhengzhong,&Ling, Shengjie.(2022).Acquiring structural and mechanical information of a fibrous network through deep learning.NANOSCALE,14(13),5044-5053.
MLA Yang, Shuo,et al."Acquiring structural and mechanical information of a fibrous network through deep learning".NANOSCALE 14.13(2022):5044-5053.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Shuo]的文章
[Zhao, Chenxi]的文章
[Ren, Jing]的文章
百度学术
百度学术中相似的文章
[Yang, Shuo]的文章
[Zhao, Chenxi]的文章
[Ren, Jing]的文章
必应学术
必应学术中相似的文章
[Yang, Shuo]的文章
[Zhao, Chenxi]的文章
[Ren, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。