消息
×
loading..
Disentangling Light Fields for Super-Resolution and Disparity Estimation
2023
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (IF:20.8[JCR-2023],22.2[5-Year])
ISSN0162-8828
EISSN1939-3539
卷号45期号:1页码:425-443
发表状态已发表
DOI10.1109/TPAMI.2022.3152488
摘要Light field (LF) cameras record both intensity and directions of light rays, and encode 3D cues into 4D LF images. Recently, many convolutional neural networks (CNNs) have been proposed for various LF image processing tasks. However, it is challenging for CNNs to effectively process LF images since the spatial and angular information are highly inter-twined with varying disparities. In this paper, we propose a generic mechanism to disentangle these coupled information for LF image processing. Specifically, we first design a class of domain-specific convolutions to disentangle LFs from different dimensions, and then leverage these disentangled features by designing task-specific modules. Our disentangling mechanism can well incorporate the LF structure prior and effectively handle 4D LF data. Based on the proposed mechanism, we develop three networks (i.e., DistgSSR, DistgASR and DistgDisp) for spatial super-resolution, angular super-resolution and disparity estimation. Experimental results show that our networks achieve state-of-the-art performance on all these three tasks, which demonstrates the effectiveness, efficiency, and generality of our disentangling mechanism. Project page: https://yingqianwang.github.io/DistgLF/. IEEE
关键词Cameras Convolution Field emission displays Neural networks Optical resolving power Three dimensional displays Disparity estimations Feature disentangling Field images Image super resolutions Images processing Images reconstruction Light field image processing Light fields Spatial resolution Task analysis Three-dimensional display View synthesis
URL查看原文
收录类别EI ; SCI ; SCOPUS
语种英语
资助项目National Natural Science Foundation ofChina["U20A20185","61972435","61401474","61921001"]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000899419900026
出版者IEEE Computer Society
EI入藏号20220911725859
EI主题词Image reconstruction
EI分类号716.1 Information Theory and Signal Processing ; 722.2 Computer Peripheral Equipment ; 741.1 Light/Optics ; 742.2 Photographic Equipment
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/159573
专题信息科学与技术学院
信息科学与技术学院_PI研究组_虞晶怡组
通讯作者Yang, Jungang; Guo, Yulan
作者单位
1.Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Hunan, Peoples R China
2.Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Pudong 201210, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yingqian,Wang, Longguang,Wu, Gaochang,et al. Disentangling Light Fields for Super-Resolution and Disparity Estimation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2023,45(1):425-443.
APA Wang, Yingqian.,Wang, Longguang.,Wu, Gaochang.,Yang, Jungang.,An, Wei.,...&Guo, Yulan.(2023).Disentangling Light Fields for Super-Resolution and Disparity Estimation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,45(1),425-443.
MLA Wang, Yingqian,et al."Disentangling Light Fields for Super-Resolution and Disparity Estimation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 45.1(2023):425-443.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yingqian]的文章
[Wang, Longguang]的文章
[Wu, Gaochang]的文章
百度学术
百度学术中相似的文章
[Wang, Yingqian]的文章
[Wang, Longguang]的文章
[Wu, Gaochang]的文章
必应学术
必应学术中相似的文章
[Wang, Yingqian]的文章
[Wang, Longguang]的文章
[Wu, Gaochang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TPAMI.2022.3152488.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。