消息
×
loading..
Deep Reinforcement Learning Based Iterative Participant Selection Method for Industrial IoT Big Data Mobile Crowdsourcing
2022
会议录名称ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号13087
发表状态已发表
DOI10.1007/978-3-030-95405-5_19
摘要

With the massive deployment of mobile devices, crowdsourcing has become a new service paradigm in which a task requester can proactively recruit a batch of participants with a mobile IoT device from our system for quick and accurate results. In a mobile industrial crowdsourcing platform, a large amount of data is collected, extracted information, and distributed to requesters. In an entire task process, the system receives a task, allocates some suitable participants to complete it, and collects feedback from the requesters. We present a participant selection method, which adopts an end-to-end deep neural network to iteratively update the participant selection policy. The neural network consists of three main parts: (1) task and participant ability prediction part which adopts a bag of words method to extract the semantic information of a query, (2) feature transformation part which adopts a series of linear and nonlinear transformations and (3) evaluation part which uses requesters' feedback to update the network. In addition, the policy gradient method which is proved effective in the deep reinforcement learning field is adopted to update our participant selection method with the help of requesters' feedback. Finally, we conduct an extensive performance evaluation based on the combination of real traces and a real question and answer dataset and numerical results demonstrate that our method can achieve superior performance and improve more than 150% performance gain over a baseline method.

关键词Reinforcement learning Mobile crowdsourcing
会议名称17th International Conference on Advanced Data Mining Applications (ADMA)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点null,null,ELECTR NETWORK
会议日期FEB 02-04, 2022
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目ARC DECRA[DE210101458]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000755371100019
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/159562
专题信息科学与技术学院_硕士生
通讯作者Zhang, Xuyun
作者单位
1.Tencent, Shenzhen, Peoples R China
2.Shanghaitech Univ, Shanghai, Peoples R China
3.Macquarie Univ, Sydney, NSW, Australia
4.Baidu, Beijing, Peoples R China
5.Nanjing Univ, Nanjing, Peoples R China
6.Tongji Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yan,Tian, Yun,Zhang, Xuyun,et al. Deep Reinforcement Learning Based Iterative Participant Selection Method for Industrial IoT Big Data Mobile Crowdsourcing[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yan]的文章
[Tian, Yun]的文章
[Zhang, Xuyun]的文章
百度学术
百度学术中相似的文章
[Wang, Yan]的文章
[Tian, Yun]的文章
[Zhang, Xuyun]的文章
必应学术
必应学术中相似的文章
[Wang, Yan]的文章
[Tian, Yun]的文章
[Zhang, Xuyun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。