ShanghaiTech University Knowledge Management System
Detecting Adversarial Examples Utilizing Pixel Value Diversity | |
2021-12 | |
会议录名称 | 2021 ASIAN HARDWARE ORIENTED SECURITY AND TRUST SYMPOSIUM (ASIANHOST)
![]() |
发表状态 | 已发表 |
DOI | 10.1109/AsianHOST53231.2021.9699495 |
摘要 | The state-of-the-art deep learning methods can be vulnerable: imperceptibly elaborated perturbations will induce unexpected behaviors. In this paper, we introduce two novel adversarial example detection methods utilizing pixel value diversity. First, we propose two independent metrics to assess the pixel value diversity separately, which reflects the spread of the pixel values in an image. Then we observe that adversarial examples are different from clean images on both metrics, regardless of attack methods. Based on this observation, for either metric, we can set a threshold and compare the threshold with the value of an image on the metric to detect whether the image is an adversarial example. Against several popular attack methods, experimental results on a variety of datasets show that our approach achieves better performances in detecting adversarial examples, compared to the state-of-the-art detection method. We also show that our methods are reliable even against adaptive attack. |
会议录编者/会议主办者 | IEEE,IEEE Council Elect Design Automat,IEEE Hardware Secur & Trust Tech Comm,China Comp Federat,ShanghaiTech Univ,Chinese Acad Sci, Inst Comp Technol |
会议名称 | IEEE Asian Hardware Oriented Security and Trust Symposium (AsianHOST) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,Shanghai,PEOPLES R CHINA |
会议日期 | DEC 16-18, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Information Systems |
WOS记录号 | WOS:000799493300003 |
出版者 | IEEE |
EI入藏号 | 978-1-6654-4185-8 |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/155926 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_周平强组 |
通讯作者 | Dong, Jinxin |
作者单位 | ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Dong, Jinxin,Zhou, Pingqiang. Detecting Adversarial Examples Utilizing Pixel Value Diversity[C]//IEEE,IEEE Council Elect Design Automat,IEEE Hardware Secur & Trust Tech Comm,China Comp Federat,ShanghaiTech Univ,Chinese Acad Sci, Inst Comp Technol. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Dong, Jinxin]的文章 |
[Zhou, Pingqiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dong, Jinxin]的文章 |
[Zhou, Pingqiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dong, Jinxin]的文章 |
[Zhou, Pingqiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。