Detecting Adversarial Examples Utilizing Pixel Value Diversity
2021-12
会议录名称2021 ASIAN HARDWARE ORIENTED SECURITY AND TRUST SYMPOSIUM (ASIANHOST)
发表状态已发表
DOI10.1109/AsianHOST53231.2021.9699495
摘要The state-of-the-art deep learning methods can be vulnerable: imperceptibly elaborated perturbations will induce unexpected behaviors. In this paper, we introduce two novel adversarial example detection methods utilizing pixel value diversity. First, we propose two independent metrics to assess the pixel value diversity separately, which reflects the spread of the pixel values in an image. Then we observe that adversarial examples are different from clean images on both metrics, regardless of attack methods. Based on this observation, for either metric, we can set a threshold and compare the threshold with the value of an image on the metric to detect whether the image is an adversarial example. Against several popular attack methods, experimental results on a variety of datasets show that our approach achieves better performances in detecting adversarial examples, compared to the state-of-the-art detection method. We also show that our methods are reliable even against adaptive attack.
会议录编者/会议主办者IEEE,IEEE Council Elect Design Automat,IEEE Hardware Secur & Trust Tech Comm,China Comp Federat,ShanghaiTech Univ,Chinese Acad Sci, Inst Comp Technol
会议名称IEEE Asian Hardware Oriented Security and Trust Symposium (AsianHOST)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,Shanghai,PEOPLES R CHINA
会议日期DEC 16-18, 2021
URL查看原文
收录类别CPCI-S ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems
WOS记录号WOS:000799493300003
出版者IEEE
EI入藏号978-1-6654-4185-8
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/155926
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_周平强组
通讯作者Dong, Jinxin
作者单位
ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Dong, Jinxin,Zhou, Pingqiang. Detecting Adversarial Examples Utilizing Pixel Value Diversity[C]//IEEE,IEEE Council Elect Design Automat,IEEE Hardware Secur & Trust Tech Comm,China Comp Federat,ShanghaiTech Univ,Chinese Acad Sci, Inst Comp Technol. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dong, Jinxin]的文章
[Zhou, Pingqiang]的文章
百度学术
百度学术中相似的文章
[Dong, Jinxin]的文章
[Zhou, Pingqiang]的文章
必应学术
必应学术中相似的文章
[Dong, Jinxin]的文章
[Zhou, Pingqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。