Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases
2022-07-20
发表期刊JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (IF:11.2[JCR-2023],10.4[5-Year])
ISSN1005-0302
卷号116页码:11-21
发表状态已发表
DOI10.1016/j.jmst.2021.11.032
摘要

High-temperature microwave absorbers are significant for military equipment which experiences severe aerodynamic heat. In this work, high-entropy oxide (HEO) (FexCoNiCrMn)mOn with excellent high-temperature microwave absorption is studied. Driven by the effect of entropy, the composition of the oxide can be transformed from spinel-type phase (FexCoNiCrMn)3O4 to corundum-type phase (FexCoNiCrMn)2O3 with the increasing content of iron. Only spinel-type or corundum-type structure composes the oxide when x ≤ 3 or x ≥ 5. But in-situ dual phases can coexist when x equals 4 during phase transition. Interestingly, obliged to abundant heterogeneous interfaces and crystal defects in the dual-phase HEO, magnetic property, dielectric polarization, and microwave loss ability are all well enhanced. The Smith chart analysis demonstrates the impedance matching condition is well improved due to the enhanced loss ability. These findings pave a new way for the adjustment of electromagnetic properties of HEO by entropy-driven phase regulation. Meanwhile, the dual-phase absorber can achieve better than 90% absorption in 9.6–12.4 GHz at 800 °C with a thickness of 2.6 mm, a low thermal diffusivity of 0.0038 cm2/s at 900 °C, and excellent high-temperature stability, which indicates it's promising as a high-temperature microwave absorber. © 2022

关键词Chromium compounds Corundum Defects Microwaves Transition metal oxides Transition metals Dual phase Dual phasis High entropy oxide Highest temperature In-situ dual phase Microwave absorbers Microwave absorption Spinel-type Transition-metal oxides Type structures
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目Shanghai Sailing Program[21YF1454600]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000788140500002
出版者Chinese Society of Metals
EI入藏号20220511582078
EI主题词Entropy
EI分类号482.2 Minerals ; 531 Metallurgy and Metallography ; 641.1 Thermodynamics ; 711 Electromagnetic Waves ; 714 Electronic Components and Tubes ; 951 Materials Science
原始文献类型Journal article (JA)
Scopus 记录号2-s2.0-85123854156
来源库Scopus
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153589
专题物质科学与技术学院_硕士生
物质科学与技术学院_特聘教授组_宋力昕组
物质科学与技术学院_博士生
通讯作者Deng, Ruixiang; Zhang, Tao
作者单位
1.Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Inorgan Coating Mat CAS, Shanghai 200050, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
4.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
第一作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Dai, Guohao,Deng, Ruixiang,You, Xiao,et al. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,116:11-21.
APA Dai, Guohao,Deng, Ruixiang,You, Xiao,Zhang, Tao,Yu, Yun,&Song, Lixin.(2022).Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,116,11-21.
MLA Dai, Guohao,et al."Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 116(2022):11-21.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dai, Guohao]的文章
[Deng, Ruixiang]的文章
[You, Xiao]的文章
百度学术
百度学术中相似的文章
[Dai, Guohao]的文章
[Deng, Ruixiang]的文章
[You, Xiao]的文章
必应学术
必应学术中相似的文章
[Dai, Guohao]的文章
[Deng, Ruixiang]的文章
[You, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。