ShanghaiTech University Knowledge Management System
Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases | |
2022-07-20 | |
发表期刊 | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (IF:11.2[JCR-2023],10.4[5-Year]) |
ISSN | 1005-0302 |
卷号 | 116页码:11-21 |
发表状态 | 已发表 |
DOI | 10.1016/j.jmst.2021.11.032 |
摘要 | High-temperature microwave absorbers are significant for military equipment which experiences severe aerodynamic heat. In this work, high-entropy oxide (HEO) (FexCoNiCrMn)mOn with excellent high-temperature microwave absorption is studied. Driven by the effect of entropy, the composition of the oxide can be transformed from spinel-type phase (FexCoNiCrMn)3O4 to corundum-type phase (FexCoNiCrMn)2O3 with the increasing content of iron. Only spinel-type or corundum-type structure composes the oxide when x ≤ 3 or x ≥ 5. But in-situ dual phases can coexist when x equals 4 during phase transition. Interestingly, obliged to abundant heterogeneous interfaces and crystal defects in the dual-phase HEO, magnetic property, dielectric polarization, and microwave loss ability are all well enhanced. The Smith chart analysis demonstrates the impedance matching condition is well improved due to the enhanced loss ability. These findings pave a new way for the adjustment of electromagnetic properties of HEO by entropy-driven phase regulation. Meanwhile, the dual-phase absorber can achieve better than 90% absorption in 9.6–12.4 GHz at 800 °C with a thickness of 2.6 mm, a low thermal diffusivity of 0.0038 cm2/s at 900 °C, and excellent high-temperature stability, which indicates it's promising as a high-temperature microwave absorber. © 2022 |
关键词 | Chromium compounds Corundum Defects Microwaves Transition metal oxides Transition metals Dual phase Dual phasis High entropy oxide Highest temperature In-situ dual phase Microwave absorbers Microwave absorption Spinel-type Transition-metal oxides Type structures |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | Shanghai Sailing Program[21YF1454600] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000788140500002 |
出版者 | Chinese Society of Metals |
EI入藏号 | 20220511582078 |
EI主题词 | Entropy |
EI分类号 | 482.2 Minerals ; 531 Metallurgy and Metallography ; 641.1 Thermodynamics ; 711 Electromagnetic Waves ; 714 Electronic Components and Tubes ; 951 Materials Science |
原始文献类型 | Journal article (JA) |
Scopus 记录号 | 2-s2.0-85123854156 |
来源库 | Scopus |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153589 |
专题 | 物质科学与技术学院_硕士生 物质科学与技术学院_特聘教授组_宋力昕组 物质科学与技术学院_博士生 |
通讯作者 | Deng, Ruixiang; Zhang, Tao |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Inorgan Coating Mat CAS, Shanghai 200050, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China 3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 4.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Dai, Guohao,Deng, Ruixiang,You, Xiao,et al. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,116:11-21. |
APA | Dai, Guohao,Deng, Ruixiang,You, Xiao,Zhang, Tao,Yu, Yun,&Song, Lixin.(2022).Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,116,11-21. |
MLA | Dai, Guohao,et al."Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 116(2022):11-21. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。