| |||||||
ShanghaiTech University Knowledge Management System
Prior Based Human Completion | |
2021 | |
会议录名称 | 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR46437.2021.00786 |
摘要 | We study a very challenging task, human image completion, which tries to recover the human body part with a reasonable human shape from the corrupted region. Since each human body part is unique, it is infeasible to restore the missing part by borrowing textures from other visible regions. Thus, we propose two types of learned priors to compensate for the damaged region. One is a structure prior, it uses a human parsing map to represent the human body structure. The other is a structure-texture correlation prior. It learns a structure and a texture memory bank, which encodes the common body structures and texture patterns, respectively. With the aid of these memory banks, the model could utilize the visible pattern to query and fetch a similar structure and texture pattern to introduce additional reasonable structures and textures for the corrupted region. Besides, since multiple potential human shapes are underlying the corrupted region, we propose multi-scale structure discriminators to further restore a plausible topological structure. Experiments on various large-scale benchmarks demonstrate the effectiveness of our proposed method. |
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | JUN 19-25, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2018AAA0100704] ; NSFC[61932020] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000739917308018 |
出版者 | IEEE COMPUTER SOC |
EI入藏号 | / |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153576 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_硕士生 |
通讯作者 | Gao, Shenghua |
作者单位 | 1.ShanghaiTech 2.ASTAR, Inst High Performance Comp, Singapore, Singapore 3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China 4.Alibaba Grp, Hangzhou, Peoples R China 5.Taobao, Hangzhou, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhao, Zibo,Liu, Wen,Xu, Yanyu,et al. Prior Based Human Completion[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhao, Zibo]的文章 |
[Liu, Wen]的文章 |
[Xu, Yanyu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhao, Zibo]的文章 |
[Liu, Wen]的文章 |
[Xu, Yanyu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhao, Zibo]的文章 |
[Liu, Wen]的文章 |
[Xu, Yanyu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。