ESampler: Efficient Sampling of Satisfying Assignments for Boolean Formulas
2021
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号13071 LNCS
页码279-298
发表状态已发表
DOI10.1007/978-3-030-91265-9_15
摘要

Boolean satisfiability (SAT) has played a key role in diverse areas spanning planning, inferencing, data mining, testing and optimization. Apart from the classical problem of checking Boolean satisfiability, generating random satisfying assignments has attracted significant theoretical and practical interests over the years. For practical applications, a large number of satisfying assignments for a given Boolean formula are needed, the generation of which turns out to be a hard problem in both theory and practice. In this work, we propose a novel approach to derive a large set of satisfying assignments from a given one in an efficient way. Our approach is orthogonal to the previous techniques for generating satisfying assignments and could be integrated into the existing SAT samplers. We implement our approach as an open-source tool ESampler and conduct extensive experiments on real-world benchmarks. Experimental results show that ESampler performs better than three state-of-the-art samplers on a large portion of the benchmarks, and is at least comparable on the others, showcasing the efficacy of our approach. © 2021, Springer Nature Switzerland AG.

关键词Boolean algebra Constraint satisfaction problems Formal logic-Boolean formulae Boolean satisfiability Classical problems Constraint-based Constraint-based sampling Data optimization Data testing Efficient sampling Satisfiability solving Satisfying assignments
会议名称7th International Symposium on Dependable Software Engineering: Theories, Tools, and Applications, SETTA 2021
会议地点Beijing, China
会议日期November 25, 2021 - November 27, 2021
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20214911286590
EI主题词Data mining
EISSN1611-3349
EI分类号721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.2 Data Processing and Image Processing ; 921 Mathematics ; 921.1 Algebra
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135785
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_宋富组
通讯作者Song, Fu
作者单位
1.ShanghaiTech University, Shanghai, China;
2.Birkbeck, University of London, London, United Kingdom
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xu, Yongjie,Song, Fu,Chen, Taolue. ESampler: Efficient Sampling of Satisfying Assignments for Boolean Formulas[C]:Springer Science and Business Media Deutschland GmbH,2021:279-298.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Yongjie]的文章
[Song, Fu]的文章
[Chen, Taolue]的文章
百度学术
百度学术中相似的文章
[Xu, Yongjie]的文章
[Song, Fu]的文章
[Chen, Taolue]的文章
必应学术
必应学术中相似的文章
[Xu, Yongjie]的文章
[Song, Fu]的文章
[Chen, Taolue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。