ShanghaiTech University Knowledge Management System
ESampler: Efficient Sampling of Satisfying Assignments for Boolean Formulas | |
2021 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 13071 LNCS |
页码 | 279-298 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-030-91265-9_15 |
摘要 | Boolean satisfiability (SAT) has played a key role in diverse areas spanning planning, inferencing, data mining, testing and optimization. Apart from the classical problem of checking Boolean satisfiability, generating random satisfying assignments has attracted significant theoretical and practical interests over the years. For practical applications, a large number of satisfying assignments for a given Boolean formula are needed, the generation of which turns out to be a hard problem in both theory and practice. In this work, we propose a novel approach to derive a large set of satisfying assignments from a given one in an efficient way. Our approach is orthogonal to the previous techniques for generating satisfying assignments and could be integrated into the existing SAT samplers. We implement our approach as an open-source tool ESampler and conduct extensive experiments on real-world benchmarks. Experimental results show that ESampler performs better than three state-of-the-art samplers on a large portion of the benchmarks, and is at least comparable on the others, showcasing the efficacy of our approach. © 2021, Springer Nature Switzerland AG. |
关键词 | Boolean algebra Constraint satisfaction problems Formal logic-Boolean formulae Boolean satisfiability Classical problems Constraint-based Constraint-based sampling Data optimization Data testing Efficient sampling Satisfiability solving Satisfying assignments |
会议名称 | 7th International Symposium on Dependable Software Engineering: Theories, Tools, and Applications, SETTA 2021 |
会议地点 | Beijing, China |
会议日期 | November 25, 2021 - November 27, 2021 |
收录类别 | EI |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20214911286590 |
EI主题词 | Data mining |
EISSN | 1611-3349 |
EI分类号 | 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.2 Data Processing and Image Processing ; 921 Mathematics ; 921.1 Algebra |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135785 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_宋富组 |
通讯作者 | Song, Fu |
作者单位 | 1.ShanghaiTech University, Shanghai, China; 2.Birkbeck, University of London, London, United Kingdom |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Yongjie,Song, Fu,Chen, Taolue. ESampler: Efficient Sampling of Satisfying Assignments for Boolean Formulas[C]:Springer Science and Business Media Deutschland GmbH,2021:279-298. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。