| |||||||
ShanghaiTech University Knowledge Management System
Online power system parameter estimation and optimal operation | |
2021-05-25 | |
会议录名称 | PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE |
ISSN | 0743-1619 |
卷号 | 2021-May |
页码 | 3126-3131 |
发表状态 | 已发表 |
DOI | 10.23919/ACC50511.2021.9482814 |
摘要 | The integration of renewables into electrical grids calls for novel control schemes, which usually are model based. Classically, for power systems parameter estimation and optimization-based control are often decoupled, which may lead to increased cost of system operation during the estimation procedures. The present work proposes a method for simultaneously minimizing grid operation cost and estimating line parameters. To this end, we rely on methods from optimal design of experiments. This approach leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard combination of optimal power flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on simple benchmark system. © 2021 American Automatic Control Council. |
会议录编者/会议主办者 | et al. ; Halliburton ; MathWorks ; Mitsubishi Electric Research Laboratory (MERL) ; US National Member Organization (NMO) of the International Federation of Automatic Control (IFAC) ; Wiley |
关键词 | Benchmarking Cost estimating Design of experiments Electric load flow Maximum likelihood estimation-Cost of system operations Estimation and optimization Estimation procedures Integration of renewables Novel control scheme Optimal estimations Power system parameter estimation Substantial reduction |
会议名称 | 2021 American Control Conference, ACC 2021 |
会议地点 | Virtual, New Orleans, LA, United states |
会议日期 | May 25, 2021 - May 28, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20213210733407 |
EI主题词 | Parameter estimation |
EI分类号 | 706.1 Electric Power Systems ; 901.3 Engineering Research ; 911 Cost and Value Engineering ; Industrial Economics ; 922 Statistical Methods |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135784 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_Boris Houska组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China 2.Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund University, Germany |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xu Du,Alexander Engelmann,Timm Faulwasser,et al. Online power system parameter estimation and optimal operation[C]//et al., Halliburton, MathWorks, Mitsubishi Electric Research Laboratory (MERL), US National Member Organization (NMO) of the International Federation of Automatic Control (IFAC), Wiley:Institute of Electrical and Electronics Engineers Inc.,2021:3126-3131. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。