消息
×
loading..
Federated Learning with Class Imbalance Reduction
2021-08-23
会议录名称2021 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO)
ISSN2076-1465
发表状态已发表
DOI10.23919/EUSIPCO54536.2021.9616052
摘要Federated learning (FL) is a promising technique that enables a large amount of edge computing devices to collaboratively train a global learning model. Due to the communication limitation, only a subset of devices can be engaged to train and transmit the trained model to centralized server for aggregation. Since the local data distribution varies among all devices, class imbalance problem arises along with the unfavorable client selection, resulting in a slow converge rate of the global model. In this paper, we design an estimation scheme to reveal the class distribution without the awareness of raw data. According to the estimation scheme, we propose a multi-arm bandit based algorithm that can select the client set with minimal class imbalance. The proposed algorithm can significantly improve the convergence performance of the global model. Simulation results demonstrate the effectiveness of the proposed algorithm.
关键词federated learning deep neural networks privacy concerns class imbalance client scheduling multi-armed bandit
会议名称29th European Signal Processing Conference (EUSIPCO)
出版地PO BOX 74251, KESSARIANI, 151 10, GREECE
会议地点null,null,ELECTR NETWORK
会议日期AUG 23-27, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[61671436] ; Science and Technology Commission Foundation of Shanghai[19DZ1204300]
WOS研究方向Acoustics ; Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Telecommunications
WOS类目Acoustics ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Telecommunications
WOS记录号WOS:000764066600430
出版者EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135532
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_钱骅组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Yang, Miao; Qian, Hua
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China
3.Chinese Acad Sci, Key Lab Wireless Sensor Network Commun, Beijing, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yang, Miao,Wang, Ximin,Zhu, Hongbin,et al. Federated Learning with Class Imbalance Reduction[C]. PO BOX 74251, KESSARIANI, 151 10, GREECE:EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP,2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Miao]的文章
[Wang, Ximin]的文章
[Zhu, Hongbin]的文章
百度学术
百度学术中相似的文章
[Yang, Miao]的文章
[Wang, Ximin]的文章
[Zhu, Hongbin]的文章
必应学术
必应学术中相似的文章
[Yang, Miao]的文章
[Wang, Ximin]的文章
[Zhu, Hongbin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.23919@EUSIPCO54536.2021.9616052.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。