| |||||||
ShanghaiTech University Knowledge Management System
Federated Learning with Class Imbalance Reduction | |
2021-08-23 | |
会议录名称 | 2021 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO)
![]() |
ISSN | 2076-1465 |
发表状态 | 已发表 |
DOI | 10.23919/EUSIPCO54536.2021.9616052 |
摘要 | Federated learning (FL) is a promising technique that enables a large amount of edge computing devices to collaboratively train a global learning model. Due to the communication limitation, only a subset of devices can be engaged to train and transmit the trained model to centralized server for aggregation. Since the local data distribution varies among all devices, class imbalance problem arises along with the unfavorable client selection, resulting in a slow converge rate of the global model. In this paper, we design an estimation scheme to reveal the class distribution without the awareness of raw data. According to the estimation scheme, we propose a multi-arm bandit based algorithm that can select the client set with minimal class imbalance. The proposed algorithm can significantly improve the convergence performance of the global model. Simulation results demonstrate the effectiveness of the proposed algorithm. |
关键词 | federated learning deep neural networks privacy concerns class imbalance client scheduling multi-armed bandit |
会议名称 | 29th European Signal Processing Conference (EUSIPCO) |
出版地 | PO BOX 74251, KESSARIANI, 151 10, GREECE |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | AUG 23-27, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61671436] ; Science and Technology Commission Foundation of Shanghai[19DZ1204300] |
WOS研究方向 | Acoustics ; Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Telecommunications |
WOS类目 | Acoustics ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Telecommunications |
WOS记录号 | WOS:000764066600430 |
出版者 | EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135532 |
专题 | 信息科学与技术学院 信息科学与技术学院_特聘教授组_钱骅组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Yang, Miao; Qian, Hua |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China 3.Chinese Acad Sci, Key Lab Wireless Sensor Network Commun, Beijing, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yang, Miao,Wang, Ximin,Zhu, Hongbin,et al. Federated Learning with Class Imbalance Reduction[C]. PO BOX 74251, KESSARIANI, 151 10, GREECE:EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP,2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。