ShanghaiTech University Knowledge Management System
Image compression via multiple learned geometric dictionaries | |
2016-12 | |
会议录名称 | 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP)
![]() |
页码 | 1373-1377 |
发表状态 | 已发表 |
DOI | 10.1109/GlobalSIP.2016.7906066 |
摘要 | In this paper, we present a novel image codec by leveraging sparse representation strategy for geometric pattern encoding. Specifically, we propose a Multiple Learned Geometric Dictionaries (MLGD) solution to explore various texture patterns of images, and use different dictionaries to encode homogenous smooth components and heterogeneous directional components. Profiting from model proficiency, our approach better preserves subtle details with high expressiveness and eliminates artifacts such as ringing and blurring. Experimental results indicate the proposed codec outperforms state-of-the-art in both numerical measures and visual fidelity, lifting the quality of experience (QoE) at low bit-rate. |
关键词 | Dictionaries Image coding Codecs Transform coding Decoding Training |
会议地点 | Washington, DC |
会议日期 | 7-9 Dec. 2016 |
URL | 查看原文 |
收录类别 | EI |
资助项目 | National Natural Science Foundation of China[61021001] ; National Natural Science Foundation of China[61471220] ; National Natural Science Foundation of China[91538107] |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20172003679318 |
EI主题词 | Encoding (symbols) ; Geometry ; Quality of service |
EI分类号 | Data Processing and Image Processing:723.2 ; Mathematics:921 |
原始文献类型 | Conferences |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/13364 |
专题 | 信息科学与技术学院_PI研究组_高盛华组 |
作者单位 | 1.Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China 2.Beihang University, Beijing, China 3.ShanghaiTech University, Shanghai, China |
推荐引用方式 GB/T 7714 | Danlan Huang,Xiaoming Tao,Mai Xu,et al. Image compression via multiple learned geometric dictionaries[C]:Institute of Electrical and Electronics Engineers Inc.,2016:1373-1377. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。