Sparse signal processing for massive connectivity via mixed-integer programming
2021-07-28
会议录名称2021 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC 2021
ISSN2377-8644
页码272-276
发表状态已发表
DOI10.1109/ICCC52777.2021.9580226
摘要Massive connectivity is a critical challenge of Internet of Things (IoT) networks. In this paper, we consider the grant-free uplink transmission of an IoT network with a multi-antenna base station (BS) and a large number of single-antenna IoT devices. Due to the sporadic nature of IoT devices, we formulate the joint activity detection and channel estimation (JADCE) problem as a group-sparse matrix estimation problem. Although many algorithms have been proposed to solve the JADCE problem, most of them are developed based on compressive sensing technique, yielding suboptimal solutions. In this paper, we first develop an efficient weighted $l_{1}$ -norm minimization algorithm to better approximate the group sparsity than the existing mixed $l_{1}/l_{2}$.. norm minimization. Although an enhanced estimation performance in terms of the mean squared error (MSE) can be achieved, the weighted l1 -norm minimization algorithm is still a convex relaxation of the original group-sparse matrix estimation problem, yielding a suboptimal solution. To this end, we further reformulate the JADCE problem as a mixed integer programming (MIP) problem, which can be solved by using the branch-and-bound method. As a result, we are able to obtain an optimal solution of the JADCE problem, which can be adopted as an upper bound to evaluate the effectiveness of the existing algorithms. Moreover, we also derive the minimum pilot sequence length required to fully recover the estimated matrix in the noiseless scenario. Simulation results show the performance gains of the proposed optimal algorithm over the proposed weighted $l_{1}$-norm algorithm and the conventional mixed $l_{1}/l_{2}$ norm algorithm. Results also show that the proposed algorithms require a short pilot sequence than the conventional algorithm to achieve the same estimation performance. © 2021 IEEE.
关键词Antennas Branch and bound method Channel estimation Integer programming Internet of things Matrix algebra Mean square error Relaxation processes Signal processing Activity detection Estimation problem Group sparse Joint activity Joint activity detection and channel estimation Massive connectivity Matrix estimation Mixed Integer Programming Optimal solutions Sparse matrices
会议名称2021 IEEE/CIC International Conference on Communications in China, ICCC 2021
会议地点Xiamen, China
会议日期July 28, 2021 - July 30, 2021
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20214711202548
EI主题词Optimal systems
EI分类号716.1 Information Theory and Signal Processing ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 921.1 Algebra ; 921.5 Optimization Techniques ; 922.2 Mathematical Statistics ; 931.1 Mechanics ; 961 Systems Science
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133519
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shuang Liang,Yuanming Shi,Yong Zhou. Sparse signal processing for massive connectivity via mixed-integer programming[C]:Institute of Electrical and Electronics Engineers Inc.,2021:272-276.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shuang Liang]的文章
[Yuanming Shi]的文章
[Yong Zhou]的文章
百度学术
百度学术中相似的文章
[Shuang Liang]的文章
[Yuanming Shi]的文章
[Yong Zhou]的文章
必应学术
必应学术中相似的文章
[Shuang Liang]的文章
[Yuanming Shi]的文章
[Yong Zhou]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICCC52777.2021.9580226.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。