Fast Convergence Algorithm for Analog Federated Learning
2021-06-01
会议录名称IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS
ISSN1550-3607
发表状态已发表
DOI10.1109/ICC42927.2021.9500875
摘要

In this paper, we consider federated learning (FL) over a noisy fading multiple access channel (MAC), where an edge server aggregates the local models transmitted by multiple end devices through over-the-air computation (AirComp). To realize efficient analog federated learning over wireless channels, we propose an AirComp-based FedSplit algorithm, where a threshold-based device selection scheme is adopted to achieve reliable local model uploading. In particular, we analyze the performance of the proposed algorithm and prove that the proposed algorithm linearly converges to the optimal solutions under the assumption that the objective function is strongly convex and smooth. We also characterize the robustness of proposed algorithm to the ill-conditioned problems, thereby achieving fast convergence rates and reducing communication rounds. A finite error bound is further provided to reveal the relationship between the convergence behavior and the channel fading and noise. Our algorithm is theoretically and experimentally verified to be much more robust to the ill-conditioned problems with faster convergence compared with other benchmark FL algorithms. © 2021 IEEE.

会议录编者/会议主办者IEEE Communications Society ; IEEE Montreal Section ; IEEE Ottawa Section
关键词Learning algorithms Learning systems Device selection Edge server End devices Fast convergence Ill conditioned problems Local model Multiple access channels Over the airs Threshold based devices Wireless channel
会议名称2021 IEEE International Conference on Communications, ICC 2021
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Virtual, Online, Canada
会议日期June 14, 2021 - June 23, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China (NSFC)[U20A20159]
WOS研究方向Telecommunications
WOS类目Telecommunications
WOS记录号WOS:000719386003135
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20213910951645
EI主题词Fading channels
EI分类号711.2 Electromagnetic Waves in Relation to Various Structures ; 723.4.2 Machine Learning
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133516
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
通讯作者Xia, Shuhao
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Tsinghua Univ, Dept Elect Engn, BNRist, Beijing 100084, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xia, Shuhao,Zhu, Jingyang,Yang, Yuhan,et al. Fast Convergence Algorithm for Analog Federated Learning[C]//IEEE Communications Society, IEEE Montreal Section, IEEE Ottawa Section. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xia, Shuhao]的文章
[Zhu, Jingyang]的文章
[Yang, Yuhan]的文章
百度学术
百度学术中相似的文章
[Xia, Shuhao]的文章
[Zhu, Jingyang]的文章
[Yang, Yuhan]的文章
必应学术
必应学术中相似的文章
[Xia, Shuhao]的文章
[Zhu, Jingyang]的文章
[Yang, Yuhan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICC42927.2021.9500875.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。