ShanghaiTech University Knowledge Management System
Fast Convergence Algorithm for Analog Federated Learning | |
2021-06-01 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS |
ISSN | 1550-3607 |
发表状态 | 已发表 |
DOI | 10.1109/ICC42927.2021.9500875 |
摘要 | In this paper, we consider federated learning (FL) over a noisy fading multiple access channel (MAC), where an edge server aggregates the local models transmitted by multiple end devices through over-the-air computation (AirComp). To realize efficient analog federated learning over wireless channels, we propose an AirComp-based FedSplit algorithm, where a threshold-based device selection scheme is adopted to achieve reliable local model uploading. In particular, we analyze the performance of the proposed algorithm and prove that the proposed algorithm linearly converges to the optimal solutions under the assumption that the objective function is strongly convex and smooth. We also characterize the robustness of proposed algorithm to the ill-conditioned problems, thereby achieving fast convergence rates and reducing communication rounds. A finite error bound is further provided to reveal the relationship between the convergence behavior and the channel fading and noise. Our algorithm is theoretically and experimentally verified to be much more robust to the ill-conditioned problems with faster convergence compared with other benchmark FL algorithms. © 2021 IEEE. |
会议录编者/会议主办者 | IEEE Communications Society ; IEEE Montreal Section ; IEEE Ottawa Section |
关键词 | Learning algorithms Learning systems Device selection Edge server End devices Fast convergence Ill conditioned problems Local model Multiple access channels Over the airs Threshold based devices Wireless channel |
会议名称 | 2021 IEEE International Conference on Communications, ICC 2021 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Virtual, Online, Canada |
会议日期 | June 14, 2021 - June 23, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[U20A20159] |
WOS研究方向 | Telecommunications |
WOS类目 | Telecommunications |
WOS记录号 | WOS:000719386003135 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20213910951645 |
EI主题词 | Fading channels |
EI分类号 | 711.2 Electromagnetic Waves in Relation to Various Structures ; 723.4.2 Machine Learning |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133516 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 |
通讯作者 | Xia, Shuhao |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Tsinghua Univ, Dept Elect Engn, BNRist, Beijing 100084, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xia, Shuhao,Zhu, Jingyang,Yang, Yuhan,et al. Fast Convergence Algorithm for Analog Federated Learning[C]//IEEE Communications Society, IEEE Montreal Section, IEEE Ottawa Section. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。