An em Framework for Online Incremental Learning of Semantic Segmentation
2021-10-17
会议录名称MM 2021 - PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码3052-3060
发表状态已发表
DOI10.1145/3474085.3475443
摘要

Incremental learning of semantic segmentation has emerged as a promising strategy for visual scene interpretation in the open-world setting. However, it remains challenging to acquire novel classes in an online fashion for the segmentation task, mainly due to its continuously-evolving semantic label space, partial pixelwise ground-truth annotations, and constrained data availability. To address this, we propose an incremental learning strategy that can fast adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only. To this end, we develop a unified learning strategy based on the Expectation-Maximization (EM) framework, which integrates an iterative relabeling strategy that fills in the missing labels and a rehearsal-based incremental learning step that balances the stability-plasticity of the model. Moreover, our EM algorithm adopts an adaptive sampling method to select informative training data and a class-balancing training strategy in the incremental model updates, both improving the efficacy of model learning. We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods. © 2021 ACM.

会议录编者/会议主办者ACM SIGMM
关键词Computer vision Deep neural networks E learning Iterative methods Maximum principle Semantic Web Semantics Incremental learning Learning strategy On line fashion Online incremental learning Online learning Open world Scene interpretation Semantic labels Semantic segmentation Visual scene
会议名称29th ACM International Conference on Multimedia, MM 2021
会议地点Virtual, Online, China
会议日期October 20, 2021 - October 24, 2021
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20214711200140
EI主题词Semantic Segmentation
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723 Computer Software, Data Handling and Applications ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision ; 903 Information Science ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133472
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_硕士生
通讯作者He, Xuming
作者单位
1.ShanghaiTech University, China;
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China;
3.University of Chinese Academy of Sciences, China;
4.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yan, Shipeng,Zhou, Jiale,Xie, Jiangwei,et al. An em Framework for Online Incremental Learning of Semantic Segmentation[C]//ACM SIGMM:Association for Computing Machinery, Inc,2021:3052-3060.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yan, Shipeng]的文章
[Zhou, Jiale]的文章
[Xie, Jiangwei]的文章
百度学术
百度学术中相似的文章
[Yan, Shipeng]的文章
[Zhou, Jiale]的文章
[Xie, Jiangwei]的文章
必应学术
必应学术中相似的文章
[Yan, Shipeng]的文章
[Zhou, Jiale]的文章
[Xie, Jiangwei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3474085.3475443.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。