ShanghaiTech University Knowledge Management System
An em Framework for Online Incremental Learning of Semantic Segmentation | |
2021-10-17 | |
会议录名称 | MM 2021 - PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA |
页码 | 3052-3060 |
发表状态 | 已发表 |
DOI | 10.1145/3474085.3475443 |
摘要 | Incremental learning of semantic segmentation has emerged as a promising strategy for visual scene interpretation in the open-world setting. However, it remains challenging to acquire novel classes in an online fashion for the segmentation task, mainly due to its continuously-evolving semantic label space, partial pixelwise ground-truth annotations, and constrained data availability. To address this, we propose an incremental learning strategy that can fast adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only. To this end, we develop a unified learning strategy based on the Expectation-Maximization (EM) framework, which integrates an iterative relabeling strategy that fills in the missing labels and a rehearsal-based incremental learning step that balances the stability-plasticity of the model. Moreover, our EM algorithm adopts an adaptive sampling method to select informative training data and a class-balancing training strategy in the incremental model updates, both improving the efficacy of model learning. We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods. © 2021 ACM. |
会议录编者/会议主办者 | ACM SIGMM |
关键词 | Computer vision Deep neural networks E learning Iterative methods Maximum principle Semantic Web Semantics Incremental learning Learning strategy On line fashion Online incremental learning Online learning Open world Scene interpretation Semantic labels Semantic segmentation Visual scene |
会议名称 | 29th ACM International Conference on Multimedia, MM 2021 |
会议地点 | Virtual, Online, China |
会议日期 | October 20, 2021 - October 24, 2021 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20214711200140 |
EI主题词 | Semantic Segmentation |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 723 Computer Software, Data Handling and Applications ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 741.2 Vision ; 903 Information Science ; 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133472 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_硕士生 |
通讯作者 | He, Xuming |
作者单位 | 1.ShanghaiTech University, China; 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China; 3.University of Chinese Academy of Sciences, China; 4.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yan, Shipeng,Zhou, Jiale,Xie, Jiangwei,et al. An em Framework for Online Incremental Learning of Semantic Segmentation[C]//ACM SIGMM:Association for Computing Machinery, Inc,2021:3052-3060. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。