Gradient-Based Feature Extraction from Raw Bayer Pattern Images
2021
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year])
ISSN1057-7149
EISSN1941-0042
卷号30页码:5122-5137
发表状态已发表
DOI10.1109/TIP.2021.3067166
摘要In this paper, the impact of demosaicing on gradient extraction is studied and a gradient-based feature extraction pipeline based on raw Bayer pattern images is proposed. It is shown both theoretically and experimentally that the Bayer pattern images are applicable to the central difference gradient-based feature extraction algorithms with negligible performance degradation, as long as the arrangement of color filter array (CFA) patterns matches the gradient operators. The color difference constancy assumption, which is widely used in various demosaicing algorithms, is applied in the proposed Bayer pattern image-based gradient extraction pipeline. Experimental results show that the gradients extracted from Bayer pattern images are robust enough to be used in histogram of oriented gradients (HOG)-based pedestrian detection algorithms and shift-invariant feature transform (SIFT)-based matching algorithms. By skipping most of the steps in the image signal processing (ISP) pipeline, the computational complexity and power consumption of a computer vision system can be reduced significantly. © 1992-2012 IEEE.
关键词Colorimetry Extraction Feature extraction Green computing Pipelines Bayer pattern images Computer vision system Demosaicing algorithm Gradient based feature Histogram of oriented gradients (HOG) Image signal processing Pedestrian detection Performance degradation Image color analysis Colored noise Histograms Signal processing algorithms Computer vision Gradient Bayer pattern image feature extraction demosaicing
URL查看原文
收录类别EI ; SCIE
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000655246800001
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20212310447993
EI主题词Color image processing
EI分类号619.1 Pipe, Piping and Pipelines ; 741.1 Light/Optics ; 802.3 Chemical Operations ; 941.4 Optical Variables Measurements
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133364
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wei Zhou,Ling Zhang,Shengyu Gao,et al. Gradient-Based Feature Extraction from Raw Bayer Pattern Images[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:5122-5137.
APA Wei Zhou,Ling Zhang,Shengyu Gao,&Xin Lou.(2021).Gradient-Based Feature Extraction from Raw Bayer Pattern Images.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,5122-5137.
MLA Wei Zhou,et al."Gradient-Based Feature Extraction from Raw Bayer Pattern Images".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):5122-5137.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wei Zhou]的文章
[Ling Zhang]的文章
[Shengyu Gao]的文章
百度学术
百度学术中相似的文章
[Wei Zhou]的文章
[Ling Zhang]的文章
[Shengyu Gao]的文章
必应学术
必应学术中相似的文章
[Wei Zhou]的文章
[Ling Zhang]的文章
[Shengyu Gao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TIP.2021.3067166.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。