Resolution of ideals associated to subspace arrangements
2021
发表期刊ALGEBRA & NUMBER THEORY (IF:0.9[JCR-2023],1.1[5-Year])
ISSN1937-0652
发表状态正式接收
DOINone
摘要

Let I1, . . . , In be ideals generated by linear forms in a polynomial ring over an infinite field and let J = I1 · · · In. We describe a minimal free resolution of J and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that J has linear quotients. In fact, we do this for a large class of ideals JP, where P is a certain poset ideal associated to the underlying subspace arrangement.

收录类别SCI
语种英语
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133099
专题信息科学与技术学院_PI研究组_Manolis Tsakiris组
作者单位
1.University of Genova
2.ShanghaiTech University
推荐引用方式
GB/T 7714
Aldo Conca,Manolis C. Tsakiris. Resolution of ideals associated to subspace arrangements[J]. ALGEBRA & NUMBER THEORY,2021.
APA Aldo Conca,&Manolis C. Tsakiris.(2021).Resolution of ideals associated to subspace arrangements.ALGEBRA & NUMBER THEORY.
MLA Aldo Conca,et al."Resolution of ideals associated to subspace arrangements".ALGEBRA & NUMBER THEORY (2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Aldo Conca]的文章
[Manolis C. Tsakiris]的文章
百度学术
百度学术中相似的文章
[Aldo Conca]的文章
[Manolis C. Tsakiris]的文章
必应学术
必应学术中相似的文章
[Aldo Conca]的文章
[Manolis C. Tsakiris]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。