ShanghaiTech University Knowledge Management System
Resolution of ideals associated to subspace arrangements | |
2021 | |
发表期刊 | ALGEBRA & NUMBER THEORY (IF:0.9[JCR-2023],1.1[5-Year]) |
ISSN | 1937-0652 |
发表状态 | 正式接收 |
DOI | None |
摘要 | Let I1, . . . , In be ideals generated by linear forms in a polynomial ring over an infinite field and let J = I1 · · · In. We describe a minimal free resolution of J and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that J has linear quotients. In fact, we do this for a large class of ideals JP, where P is a certain poset ideal associated to the underlying subspace arrangement. |
收录类别 | SCI |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133099 |
专题 | 信息科学与技术学院_PI研究组_Manolis Tsakiris组 |
作者单位 | 1.University of Genova 2.ShanghaiTech University |
推荐引用方式 GB/T 7714 | Aldo Conca,Manolis C. Tsakiris. Resolution of ideals associated to subspace arrangements[J]. ALGEBRA & NUMBER THEORY,2021. |
APA | Aldo Conca,&Manolis C. Tsakiris.(2021).Resolution of ideals associated to subspace arrangements.ALGEBRA & NUMBER THEORY. |
MLA | Aldo Conca,et al."Resolution of ideals associated to subspace arrangements".ALGEBRA & NUMBER THEORY (2021). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Aldo Conca]的文章 |
[Manolis C. Tsakiris]的文章 |
百度学术 |
百度学术中相似的文章 |
[Aldo Conca]的文章 |
[Manolis C. Tsakiris]的文章 |
必应学术 |
必应学术中相似的文章 |
[Aldo Conca]的文章 |
[Manolis C. Tsakiris]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。