ShanghaiTech University Knowledge Management System
Indoor Pedestrian Trajectory Detection with LSTM Network | |
2017 | |
会议录名称 | 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1
![]() |
卷号 | 1 |
页码 | 651-654 |
发表状态 | 已发表 |
DOI | 10.1109/CSE-EUC.2017.122 |
摘要 | This paper proposes a novel technique to detect the main moving trajectory of indoor pedestrians. Based on Long Short Term Memory(LSTM) Network, this deep learning network is capable of learning the trajectory of human beings using indoor Wi-Fi positioning data. The data is collected by Wi-Fi detectors densely installed in a public building in the urban area, which can ensure the detection of any portable devices as long as the Wi-Fi module is turned on. Then the model works in the form of sequence modeling to learn the trajectory of the main stream extracted from massive pedestrian positioning data In compare with methods like Recurrent Neural Network (RNN) and Gated Recurrent Unit(GRU), there is an obvious performance improvement of this method |
关键词 | Deep Learning Long Short Term Memory Wi-Fi Position Recurrent Nuearal Network |
会议地点 | Guangzhou, Guangdong, China |
会议日期 | 21-24 July 2017 |
URL | 查看原文 |
收录类别 | CPCI ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000451195900110 |
出版者 | IEEE |
EI入藏号 | 20174704447926 |
EI主题词 | Brain ; Deep learning ; Recurrent neural networks ; Trajectories ; Ubiquitous computing ; Wi-Fi ; Wireless local area networks (WLAN) |
EI分类号 | Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Computer Software, Data Handling and Applications:723 ; Computer Applications:723.5 |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/13249 |
专题 | 信息科学与技术学院 信息科学与技术学院_特聘教授组_王营冠组 信息科学与技术学院_硕士生 |
通讯作者 | Li, Jin |
作者单位 | 1.ShanghaiTech Univ, Univ Chinese Acad Sci, Shanghai, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Li, Jin,Li, Qiang,Chen, Nanxi,et al. Indoor Pedestrian Trajectory Detection with LSTM Network[C]:IEEE,2017:651-654. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Jin]的文章 |
[Li, Qiang]的文章 |
[Chen, Nanxi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Jin]的文章 |
[Li, Qiang]的文章 |
[Chen, Nanxi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Jin]的文章 |
[Li, Qiang]的文章 |
[Chen, Nanxi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。