Indoor Pedestrian Trajectory Detection with LSTM Network
2017
会议录名称2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1
卷号1
页码651-654
发表状态已发表
DOI10.1109/CSE-EUC.2017.122
摘要This paper proposes a novel technique to detect the main moving trajectory of indoor pedestrians. Based on Long Short Term Memory(LSTM) Network, this deep learning network is capable of learning the trajectory of human beings using indoor Wi-Fi positioning data. The data is collected by Wi-Fi detectors densely installed in a public building in the urban area, which can ensure the detection of any portable devices as long as the Wi-Fi module is turned on. Then the model works in the form of sequence modeling to learn the trajectory of the main stream extracted from massive pedestrian positioning data In compare with methods like Recurrent Neural Network (RNN) and Gated Recurrent Unit(GRU), there is an obvious performance improvement of this method
关键词Deep Learning Long Short Term Memory Wi-Fi Position Recurrent Nuearal Network
会议地点Guangzhou, Guangdong, China
会议日期21-24 July 2017
URL查看原文
收录类别CPCI ; EI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000451195900110
出版者IEEE
EI入藏号20174704447926
EI主题词Brain ; Deep learning ; Recurrent neural networks ; Trajectories ; Ubiquitous computing ; Wi-Fi ; Wireless local area networks (WLAN)
EI分类号Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Computer Software, Data Handling and Applications:723 ; Computer Applications:723.5
原始文献类型Proceedings Paper
来源库IEEE
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/13249
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_王营冠组
信息科学与技术学院_硕士生
通讯作者Li, Jin
作者单位
1.ShanghaiTech Univ, Univ Chinese Acad Sci, Shanghai, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Li, Jin,Li, Qiang,Chen, Nanxi,et al. Indoor Pedestrian Trajectory Detection with LSTM Network[C]:IEEE,2017:651-654.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Jin]的文章
[Li, Qiang]的文章
[Chen, Nanxi]的文章
百度学术
百度学术中相似的文章
[Li, Jin]的文章
[Li, Qiang]的文章
[Chen, Nanxi]的文章
必应学术
必应学术中相似的文章
[Li, Jin]的文章
[Li, Qiang]的文章
[Chen, Nanxi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 13249.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。