消息
×
loading..
An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems
2021-09
发表期刊IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING (IF:5.3[JCR-2023],4.5[5-Year])
ISSN2473-2400
卷号5期号:3页码:1632-1646
发表状态已发表
DOI10.1109/TGCN.2021.3083426
摘要

In fog-assisted IoT systems, it is a common practice to offload tasks from IoT devices to their nearby fog nodes to reduce task processing latencies and energy consumptions. However, the design of online energy-efficient scheme is still an open problem because of various uncertainties in system dynamics such as processing capacities and transmission rates. Moreover, the decision-making process is constrained by resource limits on fog nodes and IoT devices, making the design even more complicated. In this paper, we formulate such a task offloading problem with unknown system dynamics as a combinatorial multi-armed bandit (CMAB) problem with time-averaged energy consumption constraints. Through an effective integration of online learning and online control, we propose a Learning-Aided Green Offloading (LAGO) scheme. In LAGO, we employ bandit learning methods to handle the exploitation-exploration tradeoff and utilize virtual queue techniques to deal with the time-averaged constraints. Our theoretical analysis shows that LAGO reduces the average task latency with a tunable sublinear regret bound over a finite time horizon and satisfies the time-averaged energy constraints. We conduct extensive simulations to verify such theoretical results.

关键词Task analysis Energy consumption Uncertainty System dynamics Learning systems Decision making Optimization Internet of Things task offloading energy consumption fog computing bandit learning learning-aided control Energy efficiency Energy utilization Fog Internet of things Online systems System theory Decision making process Energy efficient Extensive simulations Finite time horizon Multi armed bandit Processing capacities Time averaged energy Transmission rates
URL查看原文
收录类别SCI ; SCIE
语种英语
WOS研究方向Telecommunications
WOS类目Telecommunications
WOS记录号WOS:000691876800052
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20212310459948
EI主题词E-learning
EI分类号443.1 Atmospheric Properties ; 525.2 Energy Conservation ; 525.3 Energy Utilization ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 912.2 Management ; 961 Systems Science
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/131657
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_PI研究组_杨旸组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shanghai Institute of Fog Computing Technology (SHIFT), ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xin Gao,Xi Huang,Ziyu Shao,et al. An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems[J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,2021,5(3):1632-1646.
APA Xin Gao,Xi Huang,Ziyu Shao,&Yang Yang.(2021).An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems.IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,5(3),1632-1646.
MLA Xin Gao,et al."An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems".IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 5.3(2021):1632-1646.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xin Gao]的文章
[Xi Huang]的文章
[Ziyu Shao]的文章
百度学术
百度学术中相似的文章
[Xin Gao]的文章
[Xi Huang]的文章
[Ziyu Shao]的文章
必应学术
必应学术中相似的文章
[Xin Gao]的文章
[Xi Huang]的文章
[Ziyu Shao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。