| |||||||
ShanghaiTech University Knowledge Management System
An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems | |
2021-09 | |
发表期刊 | IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING (IF:5.3[JCR-2023],4.5[5-Year]) |
ISSN | 2473-2400 |
卷号 | 5期号:3页码:1632-1646 |
发表状态 | 已发表 |
DOI | 10.1109/TGCN.2021.3083426 |
摘要 | In fog-assisted IoT systems, it is a common practice to offload tasks from IoT devices to their nearby fog nodes to reduce task processing latencies and energy consumptions. However, the design of online energy-efficient scheme is still an open problem because of various uncertainties in system dynamics such as processing capacities and transmission rates. Moreover, the decision-making process is constrained by resource limits on fog nodes and IoT devices, making the design even more complicated. In this paper, we formulate such a task offloading problem with unknown system dynamics as a combinatorial multi-armed bandit (CMAB) problem with time-averaged energy consumption constraints. Through an effective integration of online learning and online control, we propose a Learning-Aided Green Offloading (LAGO) scheme. In LAGO, we employ bandit learning methods to handle the exploitation-exploration tradeoff and utilize virtual queue techniques to deal with the time-averaged constraints. Our theoretical analysis shows that LAGO reduces the average task latency with a tunable sublinear regret bound over a finite time horizon and satisfies the time-averaged energy constraints. We conduct extensive simulations to verify such theoretical results. |
关键词 | Task analysis Energy consumption Uncertainty System dynamics Learning systems Decision making Optimization Internet of Things task offloading energy consumption fog computing bandit learning learning-aided control Energy efficiency Energy utilization Fog Internet of things Online systems System theory Decision making process Energy efficient Extensive simulations Finite time horizon Multi armed bandit Processing capacities Time averaged energy Transmission rates |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
WOS研究方向 | Telecommunications |
WOS类目 | Telecommunications |
WOS记录号 | WOS:000691876800052 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20212310459948 |
EI主题词 | E-learning |
EI分类号 | 443.1 Atmospheric Properties ; 525.2 Energy Conservation ; 525.3 Energy Utilization ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 912.2 Management ; 961 Systems Science |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/131657 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Fog Computing Technology (SHIFT), ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xin Gao,Xi Huang,Ziyu Shao,et al. An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems[J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,2021,5(3):1632-1646. |
APA | Xin Gao,Xi Huang,Ziyu Shao,&Yang Yang.(2021).An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems.IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,5(3),1632-1646. |
MLA | Xin Gao,et al."An Integration of Online Learning and Online Control for Green Offloading in Fog-Assisted IoT Systems".IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 5.3(2021):1632-1646. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xin Gao]的文章 |
[Xi Huang]的文章 |
[Ziyu Shao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xin Gao]的文章 |
[Xi Huang]的文章 |
[Ziyu Shao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xin Gao]的文章 |
[Xi Huang]的文章 |
[Ziyu Shao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。