消息
×
loading..
Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features
2021-10
发表期刊DIAGNOSTICS (IF:3.0[JCR-2023],3.1[5-Year])
EISSN2075-4418
卷号11期号:10
DOI10.3390/diagnostics11101875
摘要To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 & PLUSMN; 0.084, followed by the deep learning-based model with an AUC of 0.852 & PLUSMN; 0.043 then the radiomics-based model with AUC of 0.794 & PLUSMN; 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.

关键词radiomics deep learning hepatocellular carcinoma PD-L1 immunotherapy
URL查看原文
收录类别SCIE
语种英语
WOS研究方向General & Internal Medicine
WOS类目Medicine, General & Internal
WOS记录号WOS:000716258900001
出版者MDPI
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/130304
专题生物医学工程学院_PI研究组_沈定刚组
通讯作者Zhou, Bo; Yang, Xiaodong
作者单位
1.Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China;
2.Shanghai Tech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China;
3.Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Dept Med Imaging, Suzhou 215163, Peoples R China;
4.Zhongshan Hosp, Dept Radiol, Shanghai 200032, Peoples R China;
5.Fudan Univ, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China;
6.Zhongshan Hosp, Dept Intervent Radiol, Shanghai 200032, Peoples R China;
7.Natl Clin Res Ctr Intervent Med, Shanghai 200032, Peoples R China
推荐引用方式
GB/T 7714
Tian, Yuchi,Komolafe, Temitope Emmanuel,Zheng, Jian,et al. Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features[J]. DIAGNOSTICS,2021,11(10).
APA Tian, Yuchi.,Komolafe, Temitope Emmanuel.,Zheng, Jian.,Zhou, Guofeng.,Chen, Tao.,...&Yang, Xiaodong.(2021).Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features.DIAGNOSTICS,11(10).
MLA Tian, Yuchi,et al."Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features".DIAGNOSTICS 11.10(2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tian, Yuchi]的文章
[Komolafe, Temitope Emmanuel]的文章
[Zheng, Jian]的文章
百度学术
百度学术中相似的文章
[Tian, Yuchi]的文章
[Komolafe, Temitope Emmanuel]的文章
[Zheng, Jian]的文章
必应学术
必应学术中相似的文章
[Tian, Yuchi]的文章
[Komolafe, Temitope Emmanuel]的文章
[Zheng, Jian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@diagnostics11101875.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。